
Simulation
Verification &
Validation

zenzic.io

 ii

Disclaimer

This report has been written by WMG, at the University of Warwick with contributions from AESIN

and Aurrigo. Zenzic have compiled the report. Any views expressed in this report are not

necessarily those of Zenzic.

The information contained herein is the property of these organisations and does not necessarily

reflect the views or policies of the customer for whom this report was prepared. Whilst every

effort has been made to ensure that the matter presented in this report is relevant, accurate

and up-to-date, Zenzic and/or any of the authors of this report cannot accept any liability for

any error or omission, or reliance on part or all of the content in case of incidents that may arise

during trialling and testing. In addition, Zenzic and/or any of the authors of this report cannot

accept any liability for any error or omission, or reliance on part or all of the content in another

context.

When in hard copy, this publication is printed on paper that is FSC (Forest Stewardship Council)

and TCF (Totally Chlorine Free) registered.

For further information on this report please contact the Zenzic team

Email: info@zenzic.io

Web: zenzic.io

Acknowledgements

• Principle Investigator – Dr. Siddartha Khastgir, Head of Verification and Validation, WMG

• Principle Author – Dr. Jason Xizhe Zhang, Simulation Lead, WMG

• Technical delivery – WMG, supported by AESIN and Aurrigo

• Technical oversight and approval – Zenzic

Special thanks also to the Advisory Group for guiding and shaping this work, particularly

regarding the stakeholder engagement activities. The advisory group comprised: Department

for Transport (DfT), Driver and Vehicle Standards Agency (DVSA), Vehicle Certification Agency

(VCA), Institute of Digital Engineering (IDE), Connected Places Catapult, BSI, Oxfordshire

County Council, Ordnance Survey, Oxbotica, IPG Automotive, Aurrigo, University of Leeds

Institute for Transport Studies, Centre for Connected and Autonomous Vehicles (CCAV),

Department for Business, Energy & Industrial Strategy (BEIS) and Nissan.

 iii

Contents

Disclaimer ii

Executive summary 1

1 | Introduction 3
1.1 Background 3

1.2 Motivation 3

1.3 How to read this report 4

2 | The V&V evaluation continuum 5
2.1 Terms and definitions used 5

2.2 Scenario-based evaluation continuum overview 6

2.3 Scenario 7

2.4 Environment 7

2.5 Certification/safety evidence & argument 7

2.6 Simulation validation vs system testing 8

3 | The V&V framework at functional and implementation levels 10
3.1 Scenario-based evaluation at functional level 10

3.2 Scenario generation 11

3.3 Scenario format 13

3.4 Scenario storage 16

3.5 Test case generator and execution 16

3.6 Test case analysis 18

3.7 Scenario-based evaluation at implementation level 20

4 | Framework integration 23
4.1 Integration with the Zenzic Interoperable Simulation ecosystem 23

4.2 Scenario preparation and retrieval 24

4.3 Simulation data and test case parameters 25

4.4 Euro NCAP AEB use case 26

5 | Simulation validation methodology 29
5.1 Dynamic elements validation method 29

5.2 Static elements validation method 34

5.3 TRL level assessment for the simulation 37

6 | Stakeholder engagement 39
6.1 Introduction 39

6.2 Stakeholders 39

6.3 Gathered input views 41

7 | References 47

 1

Executive summary

The safe introduction and adaptation of automated/assisted driving technologies requires

extensive testing. Distance-based and real world-based testing approaches have been suggested

to be challenging to fulfil such extensive testing requirements. Recent developments within the

industry and academia have led towards a simulation-based and scenario-based testing

approach. Under such approach, virtual environments are used alongside the physical

environment, and purposely derived test scenarios are used instead of driving extensive

distances to provide safety evidences of systems. The Zenzic Simulation Verification and

Validation (V&V) project aimed at answering how simulation, together with the use of scenarios,

can be used for the testing of automated driving technologies. Furthermore, it highlights the

challenges associated with such approach and how the Zenzic V&V project addresses such

challenges.

The content presented in this report can be broadly divided into three distinctive aspects:

1 From a system testing point of view – providing that the simulation environments are

reliable and are comparable to the physical operational environment of the system, the

question was addressed as to how they can be integrated into the system testing workflow.

Furthermore, given the importance of the scenario for system development and testing, how

to design and implement a workflow that utilises both simulations and scenarios was

addressed. This aspect, therefore, introduces a novel scenario-based testing process, within

which the scenario creation, scenario description format, scenario database, scenario

retrieval, scenario execution, and scenario analysis are explained. Eight different scenario

creation methods, using both data-driven and knowledge-driven approaches, are introduced.

A novel, flexible, and readable scenario description format is also presented, together with

its conversion to open standards for wider toolchain compatibility. A powerful and rich

scenario database was also utilised during the project, for organising the related scenarios,

and offering an efficient way to retrieve test scenarios. During execution, optimisation

algorithms were implemented to explore the scenario parameter spaces and find the edge

cases. Euro NCAP scenarios were used during the project to test a target System Under Test

using the scenario-based testing workflow within a simulation environment.

2 A main assumption outlined in Aspect 1 is that simulation environments are comparable to

the physical environment, which is fundamental to any simulation-based testing activities.

However, across the industry and academia, limited evidence has been shown as to how

simulation validation can be carried out. The second aspect, therefore, focuses on the

simulation validation processes. The whole validation is divided into dynamic elements and

static elements. Dynamic elements validation focuses on the validation of dynamic agents,

ranging from macroscopic level, to vehicle level, to sub-system level, and to sensor level.

The static elements validation, on the other hand, focuses on validating the scenery

representation within the simulation. A novel approach to static element validation is

presented within this report, which compares lidar scans of the real world with a digital twin

to draw conclusions.

3 The third aspect documents the stakeholder engagement activities carried out within the V&V

project. Within Aspect 3, key and relevant contributors are identified and experts’ views on

simulation V&V are summarised which highlight the importance of simulation V&V as well as

 2

the challenges. The outcomes of the stakeholder engagement activities have fed into the UK

Connected and Automated Mobility Roadmap: Simulation to 2030, which can be found

through the Zenzic website – zenzic.io.

 3

1 | Introduction

1.1 Background

The recent advancement in Automated Driving Systems (ADSs) and advanced driver assistance

systems (ADASs) technologies is driven by the many benefits they offer, such as increased road

safety (Fagnant and Kockelman, 2015), increased traffic throughput (Le Vine et al., 2016),

reduced emission levels (Fagnant and Kockelman, 2014), and decreased driver workload (Balfe,

Sharples and Wilson, 2015). Along the development cycle of a system, a key and necessary

stage is its safety assurance. Ensuring safe introduction and public trust are important factors

for their acceptance and scalable adoption. However, the complexities associated with ADSs and

ADASs, and their interactions with the environment pose great challenge for their safety

evaluation. Traditional approaches for testing vehicles utilises a distance-based approach – i.e.,

‘X’ miles driven without accident, usually the higher the X number the safer the system is. Such

approach is no longer effective when applied to ADSs and ADASs due to two main reasons: 1)

the number of miles required for ADSs and ADASs is too high, 2) the lack of consideration of a

system’s operational design domain (ODD). Kalra et. al suggested that for ADSs they would

need to be driven 11 billion miles to demonstrate they are 20% better than human drivers (Kalra

and Paddock, 2016), translating this number of miles into a time-scale would require a fleet of

100 vehicles driving 24 hours a day, 365 days a year at a speed of 25 miles per hour to operate

for 500 years! In addition, for ADSs and ADASs, the ODD is another crucial factor in their safety

assurance and safe deployment. ODD defines the scenery, the environment and the dynamic

conditions within which the system is designed to operate (‘Operational Design Domain (ODD)

taxonomy for an automated driving system (ADS) – Specification’, 2020); being able to operate

safely within a system’s ODD is crucial. Now assuming a system is designed for inter-urban

motorway use cases, if such system was tested for 11 billion miles (or 500 years –

hypothetically) in a setting that only contains minor roads in a dessert, such effort would not be

sufficient to claim the system can operate safely on motorways.

This has led to the hazard-based testing approach [7], which focuses on the quality of the ‘miles’

driven rather than the quantity, concentrating on how a system fails rather than how it works.

One key enabler for achieving this is through the use of scenarios, where each scenario describes

a set of scenery, environmental, and dynamic conditions within which the system will be tested

[8], this results in a scenario-based testing approach. Furthermore, with the advancement in

computational power in recent years, industry and academia have adopted a hybrid scenario

execution approach containing both virtual and physical environments.

1.2 Motivation

Due to the novelty of the scenario-based evaluation approach and simulation-based testing,

industry and academia have made a significant effort to bring up the maturity of such

methodologies in recent years, both nationally (e.g., OmniCAV (Brackstone et al., 2019)) and

internationally (e.g., ASAM Simulation domain standards (ASAM e.V.)). To utilise the simulation

environment as a testing environment, a key assumption is that the simulation and real world

are comparable; this has led to the topic of simulation validation. Current work (ongoing) is

taking place within the UNECE (United Nations Economic Commission for Europe) Validation

 4

Method for Automated Driving Standards Group (VMAD SG2) on developing a credibility

assessment framework for simulation and virtual testing. The Zenzic V&V work documented here

is a collaboration between government and industry partners to further develop and contribute

towards the scenario-based and simulation-based testing based on the current state-of-the-art

within the industry. The key focuses for the V&V work are: 1) the introduction of the major

components along a scenario-based evaluation process, 2) the implementation and integration

of such an evaluation process with the rest of the Zenzic Interoperable Simulation ecosystem,

3) the establishment of a simulation validation approach for both the dynamic and static

elements, 4) creation of the UK Connected and Automated Mobility Roadmap: Simulation to

2030 in collaboration with Zenzic.

1.3 How to read this report

The document is organised as follows:

1 Section 2 will introduce the scenario-based evaluation framework at the conceptual level,

together with the illustration of all the key components.

2 Section 3 will convert and expand the evaluation framework at the functional and

implementation levels.

3 Section 4 will illustrate how, in collaboration with the Zenzic Phase 3 Interoperable Simulation

project, the V&V implementation framework was integrated with the rest of the Zenzic

Interoperable Simulation ecosystem, and how testing has been conducted utilising the

framework.

4 Section 5 will introduce the simulation validation methodology, including both the static and

dynamic elements within a simulation environment.

5 Section 6 will illustrate how the current results, and stakeholder engagement, have formed

the roadmap.

 5

2 | The V&V evaluation continuum

2.1 Terms and definitions used

Before diving deep into the scenario-based evaluation process, it is important to understand

what a scenario is, the different types of scenarios, how they are relevant to this project, and

the terminologies used.

A commonly used definition for scenario was proposed by Ulbrich et al (Ulbrich et al., 2015) as

below:

‘A scenario describes the temporal development between several scenes in a sequence of

scenes. Every scenario starts with an initial scene. Actions & events as well as goals & values

may be specified to characterize this temporal development in a scenario. Other than a scene,

a scenario spans a certain amount of time.’

Within such definition, a scene was further described as an instantaneous snapshot of the

scenario conditions including the scenery, dynamic elements, and environmental conditions.

Within a scenario-based development and testing process, purposely defined scenarios are used

throughout the whole V development model - operational concept definitions, specification and

design, development, and testing - as shown in Figure 2.1 (Bock et al., 2019). Different types

of end users sit at different locations along this V model; ADS developers might favour a common

format in order to share across organisations and systems, raising the need for standardisation

effort. Simulation test engineers might favour a highly detailed, fully parameterised, machine-

readable format for their execution and analysis. Regulators and the public might favour a higher

abstraction level and human readable natural language format. Due to the different abstraction

levels along the V development cycle, different scenario levels have been introduced within

industry and academia. Menzel et al (Menzel, Bagschik and Maurer, 2018) firstly introduced the

three scenario abstraction levels: functional scenario, logical scenario, and concrete

scenario. Functional scenario operates the scenario at a semantic level, the entities and their

relation are described via a linguistic notation. Logical scenario targets the scenario content at

a state space level, it represents the entities and their relations using parameter ranges.

Concrete scenario also targets scenario content at a state space level, it represents the entities

and their relations using concrete values. As an addition, Neurohr et al. (Neurohr et al., 2021)

recently extended the three levels of scenarios by a fourth level – abstract scenario. Abstract

scenario sits in between the functional scenario and logical scenario, it utilises a formalised

format to organise the scenario descriptions, usually adopting a natural language–based

expression (Bock et al., 2019)(Zhang, Khastgir and Jennings, 2020a).

 6

Figure 2.1, V-model for system development

Similar classification of the scenario abstraction level is also published by Khastgir et al (Khastgir

et al., 2017), within which the terms use case, test scenario, and test case were introduced.

A use case describes the system behaviour as a sequence of actions linking the result to a

particular actor. A test scenario is a specific path through a use case, i.e., a specific sequence of

actions. A test case is a set of test preconditions, inputs, and expected results, developed to

drive the execution of a test item to meet test objectives, including correct implementation,

error identification, checking quality, and other valued information.

2.2 Scenario-based evaluation continuum overview

Figure 2.2 illustrates the key components of a scenario-based evaluation continuum; it sub-

divides the content into functional steps, main elements, and the related context. As the main

elements, the whole process only needs scenario, environment, and certification. Every

main element is then mapped to their corresponding functional steps at the top, and their related

contexts are referred to at the bottom. The workflow is independent from the test execution

environment, and is applicable for simulation execution, real-world execution as well as X-in-

the-Loop (XiL) testing. The central information carried along this workflow is the scenario;

relevant scenario content is created, processed, and assessed throughout the whole process,

which forms the overall scenario-based V&V framework. The following sub-sections will further

detail each of these main elements to provide more insight.

 7

2.3 Scenario

The scenario within the main elements row in Figure 2.2 is located at the upstream of the

workflow; from it the structured scenario artefacts, together with pass/fail criteria, are created.

The scenario element includes three sub-processes: create, format and store.

The create sub-process represents the creation of scenario content; scenarios can be created

using two different approaches – knowledge-driven and data-driven (Zhang et al., 2021), (Zhang,

Khastgir and Jennings, 2020a), (Menzel et al., 2019). Furthermore, the scenario creation can be

tailored towards different related contexts as shown in the bottom row, for example system

engineering, safety, cyber security and in-service testing. The created scenarios at this stage do

not need to be represented using any specific format, they can simply use any raw output data

format from the generation pipeline. After the scenario generation, the format sub-process will

then convert the raw scenario output content into a human and machine-readable format.

Subsequently, the formalised scenario content will then be stored in a scenario database for

storage, sharing, analysis and query purposes.

2.4 Environment

The environment within the main elements row in Figure 2.2 contains different options of the

execution environment, such as real world, simulation or a hybrid of the two. Test allocation is

a key step within the environment element. This step entails the allocation of test scenarios to

be executed in different environments. Once the allocation or the test plan has been created,

the next step is to execute and analyse the scenario.

2.5 Certification/safety evidence & argument

The certification/safety evidence & argument within the main elements row in Figure 2.2

contains analyse and decide. Analyse can be further divided into 3 separate stages:

1 Correct execution - whether the intended test case has been executed.

Figure 2.2, Elements within the scenario-based evaluation continuum

 8

2 Pass/fail assessment – monitoring the execution of the scenario and assessing the runtime

output against a set of pre-defined pass/fail criteria/metrics.

3 Scenario parameter space exploration – based on the current and past concrete parameters

(e.g., speed, acceleration) and the pass/fail criteria, a test case generator, such as an

optimisation algorithm, can be applied to introduce a new set of test case parameters with

the aim of violating the scenario pass criteria.

The output from the test case generator will result in the creation of new test cases which can

then be fed back into the execution module. This is indicated by the arrow going from analyse

to execute in Figure 2.2, and it forms a closed feedback loop within this workflow. This allows

the increase of scenario coverage, the decrease of the ‘unknown unsafe’ region and the addition

of new test cases into the database. The final stage is the decide stage, based on whether the

intended test cases have occurred, the assessment on the pass/fail criteria and whether the

scenario coverage was achieved. This stage will determine the output of the whole V&V process.

2.6 Simulation validation vs system testing

Before going into the V&V evaluation continuum at the functional and implementation level, it is

important to differentiate between simulation validation and system testing.

As illustrated, the execution of scenarios can be achieved in a virtual environment, the real world,

or a hybrid of the two. As the quantity of scenarios increases, being able to decide how they are

distributed across the available environment settings for their execution becomes crucial. Real-

world execution ensures that the surrounding environment is consistent with the deployment

environment, it can also ensure that identical systems (i.e. hardware and software) are tested

between testing and deployment. However, real-world execution can be expensive, risky, and

time consuming, for example, waiting for a specific weather condition to occur, or involving

Figure 2.3, Simulation and real-world based testing used in conjunction

 9

hazardous conditions for the system under test (SUT). Simulation-based testing can be used in

conjunction with more 'expensive' real world testing (Zhang et al., 2021) to form a

comprehensive testing strategy, as shown in Figure 2.3a. In this case it acts as an initial phase

of the testing to identify a small set of high interest scenarios from a large number of input

scenarios (which might be impossible to execute in the real world), this small set of high interest

scenarios can then be executed in a real world environment. However, to enable such a workflow,

or rather to utilise any simulation environment for testing, a fundamental assumption is that

simulation and real-world environments are comparable or correlated. Without this assumption,

simulation-based activities carry little meaning.

To validate the simulation environment, the process can be divided into two aspects – dynamic

and static. The dynamic aspect includes all the scripted and non-scripted agents, as well as the

SUT. Scripted agents are the individual agents whose behaviours are specified in detail; they

interact with the SUT directly within a scenario. Non-scripted agents refers to the macroscopic

traffic behaviour, only the high-level goals and characteristics are specified, how they navigate

or behave is determined by an external traffic model. The SUT can be further divided into system

level and sensor level components. This results into four levels of dynamic validation:

macroscopic traffic level, vehicle level, system level, and sensor level. Based on such dynamic

validation levels, different approaches can be used to validate them. For example, sensor level

might require the validation of the graphical realism of the simulation, whereas vehicle level or

macroscopic level might only require the comparison of the trajectories.

On the other hand, the static element validation concerns how accurate the environment

simulator is; the term environment simulator refers to the simulated world, or ‘scenery’ based

on the definition from BSI PAS 1883 ODD taxonomy (‘Operational Design Domain (ODD)

taxonomy for an automated driving system (ADS) – Specification’, 2020). For example, if there

is a building within the scenery in the simulation world, how does it differ to the vehicle sensor

compared with the same building in the physical world.

The high-level workflow for the simulation validation can be found in Figure 2.3b. It can be seen

that similar scenario generation approaches as the system testing can be used to create scenario

descriptions based on real-world data input. Since the goal of this workflow is not to test the

system, only a small number of scenarios are needed for the simulation validation (with rich

ODD elements and diverse behaviour characteristics). The same scenarios will be executed both

in simulation and in the real world; subsequently their execution output will be compared to

derive comparison metrics. Section 5 will outline more details on the simulation validation.

 10

3 | The V&V framework at functional and
implementation levels

This section will carry on from the V&V framework at the conceptual level as illustrated in Section

2 and dive deeper into the functional workflow and implementation architecture. Each of the

elements within the functional steps in Figure 2.2 will be expanded, plus the decision logic

involved will be illustrated.

3.1 Scenario-based evaluation at functional level

Building on the scenario-based evaluation continuum, each of the blocks can be expanded

further to result in a workflow at the logical level. Figure 3.1 illustrates the functional level

workflow of the scenario-based evaluation framework. Scenarios are generated and described

using a human and machine-readable format at the logical scenario level, which are then stored

in the Safety PoolTM scenario database (Safety Pool Scenario Database) ready for query for

testing via API. Optionally, other desired executable formats such as ASAM OpenDRIVE (Dupuis,

Hekele and Biehn, 2019) and ASAM OpenSCENARIO 1.x (ASAM OpenSCENARIO 1.1.1) can also

be generated within the scenario description format box; they are then attached to the scenario

database. A scenario selector is implemented for performing the API calls; it iterates within a

specific scenario library and retrieves individual logical scenarios and the OpenX files attached

to it. The test case generator is then used to generate concrete test case parameters. Upon

execution, the test case data is processed and checked against three decision modules. The first

one is whether the intended test case situation occurred. If yes, then the test case pass/fail

criteria are checked. If no, then the test case run is checked against a pre-defined maximum

iteration number of test cases. The test case pass/fail criteria module consists of multiple types

Figure 3.1, Scenario-based testing workflow at the functional level

 11

of criteria sources. If a test case fails the criteria, then its parameter combination is recorded,

and the current logical scenario testing is terminated. If a test case passes, then it will be

checked against the maximum iteration limit. In the last step, if the maximum iteration is not

reached, the current test case parameters together with the pass criteria will be fed into the test

case generator where algorithms such as Bayesian optimisation (Gangopadhyay et al., 2019)

can be applied as a “concretiser” to introduce new parameters with the goal of driving the SUT

to violate the pass criteria. The closed loop formed by the test case generator, the test execution,

and the three test case checks enables the exploration of the parameter space set out within the

logical scenarios, while increasing the test coverage and reducing the ‘unknown unsafe’

territories. The sub-sections below illustrate the details within each of the boxes in Figure 3.1.

3.2 Scenario generation

As mentioned before, there are two different approaches for scenario generation: knowledge-

driven and data-driven [7]. A knowledge-driven scenario generation approach utilises domain

specific knowledge to identify hazardous events systematically and creates scenarios. A data

driven approach utilises the available data to identify and classify occurring scenarios. Within

the scenario generation work at the WMG V&V team, eight different methods for scenario

generation have been used, as shown in Figure 3.2. Each approach aims at answering a specific

question to ensure that the scenarios are rich and varied, and they cover real world use cases

related to the questions being addressed. Upon the generation of scenarios, they feed directly

into the Safety PoolTM scenario database for future maintenance and usage.

Option 1 Accident database – what are the causes of known accidents?

For option 1, both publicly available and private (if applicable) accident datasets are used as

input to the scenario generation pipeline to create identical scenarios, or similar scenarios but

not identical. One example is the UK STATS19 (UK Department for Transport, 2020) accident

dataset, which was studied previously (Esenturk et al., 2021) to identify accident hotspots and

scenario parameters that contribute to the causation of accidents. The severity of the accidents

recorded can be used as a filter such that characteristics of scenarios that lead to accidents of

Figure 3.2, Scenario generation methods at WMG

 12

specific severity can be extracted. Analysing severe incidents provides useful data in trends that

lead to dangerous scenarios.

Option 2 Insurance claim records – what are the near-miss events?

For option 2, insurance records can be utilised as another data source input to the scenario

generation pipeline to re-create the recorded scenarios, or to generate scenarios in a similar

category. Previously at WMG, anonymised insurance claim records provided by a project partner

were used to identify trends and explore the parameter combinations in the near-miss events

that led to the claims. Such scenarios can be utilised to study these near-miss situations and

provide better awareness for the system and system developers.

Option 3 Analytical hazard based approach – what are the potential causes of failure?

Different from option 1 & 2, option 3 is a knowledge-driven scenario generation method; it

utilises experts’ knowledge on a specific domain, which in this case is the ADS internal system

architecture, to generate scenarios. As an example, at the WMG V&V team, the Systems

Theoretic Process Analysis (STPA) was performed on several automated driving stacks to identify

potential system failure nodes and hazardous situations (Chen et al., 2020). The analysis can

then be converted into a set of logical scenarios together with their corresponding pass/fail

criteria and input into the scenario database.

Option 4 Formal methods – what are the known unsafe situations by regulations?

Option 4 uses the formal analysis approach, utilising the highway code rules for scenario

generation. Each of the highway code rules describes a hypothetical driving scenario with the

corresponding behaviour, scenery, and environmental elements. Through a formalisation

process (involving consultation with the relevant authorities), the traffic rules are converted into

unambiguous, machine-readable logical statements. Upon formalisation, further analysis can

be performed to identify the combination of scenario parameters that will result in a violation or

unsafe situation as defined by the regulation.

Option 5 ODD – what is the known safe boundary for the ADS?

Option 5 uses either the system ODD, or the associated ODD elements along a designated

operating route as the input for scenario generation. Based on such ODD input, the system’s

corresponding permitted behaviours can be filtered out from the behaviour library which contains

all the manoeuvres as well as communicating behaviours. This results in a list of ODD elements,

together with applicable behaviours. By further using an ontology model and a set of rules for

constructing logically viable scenarios (e.g., overtake is not valid when the overtaking vehicle

starts in front of the vehicle being overtaken), individual scenarios can be generated. By using

such a method, a large number of scenarios can be generated across the whole pre-defined ODD

space, ensuring a sufficient coverage.

Option 6 Ontology – what are the scenarios within a set of constraints?

 13

Option 6 uses an ontology-based scenario generation approach. An ontology defines all the

classes (e.g., Car, Road) within the domain. It also includes all the relationships (e.g., is on,

faster than) between classes and all the pre-defined rules. An example rule can be ‘if road A is

connected to road B, then the width of road A must equal to the width of road B’; such rules will

ensure the correct instantiation of a scenario. By using: 1) a well-developed ontology, with the

associated classes, relationships, and rules; 2) a highly abstract scenario description of interest

at the functional level or a set of conditions, the abstract information can be converted and

detailed into a large number of logical scenarios that satisfy the pre-defined conditions.

Option 7 Standards, regulations and guidelines – what are the existing scenarios that have

been established?

In addition to the above-mentioned scenario generation methods, existing scenarios already

defined in standards, regulations or guidelines can also be utilised for the testing of an ADS, for

example the scenarios set out in ISO22737 on Low-Speed Automated Driving (LSAD) (ISO,

2021), European New Car Assessment Programme (Euro NCAP) , and the Automated Lane

Keeping Systems (ALKS) regulation (UNECE, 2020). ISO22737 has been developed for LSADs,

the Euro NCAP provides a set of testing scenarios for the safety assurance of vehicles, and the

ALKS regulation aims at establishing uniform provisions concerning the approval of vehicles with

regard to the ALKS functions.

Option 8 Real-world deployment and trials – what unsafe situations do we know have occurred

during trials?

Option 8 includes the scenarios that occur during real-world trials and deployments. Such

scenarios might not have been considered pre-deployment, but are key learnings that can be

fed back into the scenario generation process.

3.3 Scenario format

After generating the scenario content, an adequate scenario description format is used to

represent the content and enable its sharing and execution. A two-level abstraction approach of

scenario description format has been previously developed, published, and maintained by the

WMG V&V team (Zhang, Khastgir and Jennings, 2020b). As illustrated earlier, the role of

scenarios can be seen throughout the system development and testing cycle, therefore a diverse

set of end users as well as competing requirements on the description format are analysed when

forming the language concept. End users such as ADS developers, test engineers, regulators,

and the public are considered; they sit at different positions along the V model.

Previously several types of end users along the V development cycle have been illustrated, and

their requirements on the scenario itself apply at different abstraction levels. Although there are

synergies among these requirements, some are also competing (such as executability vs high

level abstraction), this resulted in the two-level abstraction approach for the Scenario

Description Language (SDL). SDL level 1 at the abstract scenario level, is abstract and contains

less information; its syntax closely resembles a spoken natural language format under a

structured grammar. SDL level 2 sits at the logical and concrete scenario levels, it uses a formal

 14

machine-readable format. By a detailing process, one can convert SDL level 1 into level 2; and

by abstracting, the opposite can be achieved. In addition, a conversion toolchain has been

developed at the WMG V&V team to convert between SDL level 2 and the ASAM OpenX formats

(OpenSCENARIO 1.x and OpenDRIVE) for wider tool support, as shown in Figure 3.3.

OpenSCENARIO1.x and OpenDRIVE are low level xml-based formats which can be executed

across a variety of simulators. The drawbacks of them are that: 1) they are not human readable,

and therefore cannot satisfy certain user requirements, 2) OpenSCENARIO 1.x covers the

dynamic and environmental aspects, and OpenDRIVE covers the road network, this leaves part

of the ODD elements uncovered under neither standards, such as trees and buildings. Although

a user could add such additional ODD elements within the object description in OpenDRIVE, such

descriptions, from a language point of view, could benefit from further development and

alignment with ODD requirements. By enabling the conversion between the WMG SDL and

OpenX format, a gap in the current scenario description formats can be fulfilled, as outlined by

the ‘Simulation Scenarios’ study (Knabe, 2019). This gap resulted from a missing link between

high level languages and low level formats (OpenSCENARIO1.x and OpenDRIVE).

The domain model of the SDL covers the scenery, the environmental conditions, and behaviours

of any non-ego agents; in here ‘ego’ refers to the SUT. Since ODD plays an important role in the

safety assurance and safe deployment of ADSs, the domain elements that cover the scenery and

environmental conditions are referenced to the BSI PAS 1883 on ODD taxonomy (‘Operational

Design Domain (ODD) taxonomy for an automated driving system (ADS) – Specification’,

2020). This interlink between ODDs and scenarios facilitates a common, coherent, and efficient

testing and development process. For the behavioural elements of the SDL, they are divided into

manoeuvres and agent type. Manoeuvres further divides into relative manoeuvres and absolute

manoeuvres. Relative manoeuvres are the manoeuvres that require more than one entity to

perform, for example ‘Cut-In’ is a relative manoeuvre which requires two entities. Absolute

manoeuvres are the manoeuvres that a single entity can perform, an example of this is ‘Drive’

which does not indicate relations to others. Agent type, at a high level, includes vehicles,

pedestrians, and animals.

Figure 3.3, Two-level scenario description language mapped to the scenario

abstraction levels

 15

For the scenery aspects, the SDL considers any scenery settings as a roads-and-junctions

network. Each road or junction is described individually using their types and the associated

ODD attributes. In addition, for each junction, the connecting roads and lanes as well as

connecting angles are also required. This can then be referenced to the individual road

description and allow the composition of the entire scenery. Figure 3.4 provides an example

visualisation of the SDL scenery construct.

For the behaviour description, the overall structure contains two parts: initialisation phase and

manoeuvres phases. The initialisation phase sets out the initial road and lane position for each

dynamic entity; the relative heading angle and relative position between them can also be

defined. For the manoeuvre phases, a behaviour tree style description format is utilised. Each

dynamic entity contains multiple activity phases in a sequential relation; when two dynamic

entities are performing activities at the same time the activity phases between them will be in a

parallel relation. Each activity phase consists of the actual manoeuvre activity and a trigger

condition. Figure 3.5 illustrates the logic of an SDL behaviour description which consists of three

Figure 3.4, A simple illustration of the SDL scenery composition

Figure 3.5, An example illustration of the SDL dynamic description

 16

dynamic entities. The first two dynamic entities each have two activity phases and these two

dynamic entities are performing actions in a synchronised fashion. The third dynamic entity

starts to perform activities after the first two dynamic entities have stopped, it lasts for the

remainder of the scenario until the exit conditions are met. As for the environment conditions,

the SDL allows the specification of all the ODD-related environmental parameters within the

description.

3.4 Scenario storage

After creating the scenarios in the WMG SDL format, together with the OpenX format, the next

stage is to store them in a scenario database such that they can be used by individuals and

organisations to exchange, host, query and analyse. Within the Zenzic V&V project, as well as

many other national and international projects, the Safety PoolTM (Safety Pool Database)

scenario database has been used to provide such functions. It was initiated by WMG and Deepen

AI, and it utilises the ASAM OpenLABEL (ASAM OpenLABEL1.0) standard to organise and

maintain scenarios within the database. The Safety PoolTM database mechanism uses a JSON

schema with an associated ontology to assign ODD and behaviour tags to each individual

scenario, as illustrated in Figure 3.6. In Figure 3.6 (ASAM OpenLABEL1.0), the bucket of labels

corresponds to the ODD and behaviour-based ontology, the ‘label’ process corresponds to the

assignment of these elements to individual scenarios. Once the scenarios are attached with their

labels, they are then imported into the scenario database. With the help of such labels, users

can navigate and filter a large number of scenarios with little effort. In addition, the Safety PoolTM

database also provides the capability to host test route/track information, and to attach the

associated ODD elements to the route; this allows users to effectively find the suitable test

locations that match the required scenery description in the SDL. Within the Zenzic V&V project,

the database API was used to retrieve scenarios in an automated way.

3.5 Test case generator and execution

Test case generator

Once the scenarios have been populated into the database, a scenario selector retrieves the

relevant scenarios iteratively via API calls to the database; the associated SDL description as

well as the OpenSCENARIO and OpenDRIVE files can be returned. Since the SDL level 2 sits at

the logical scenario level where the parameters are defined in value ranges, and the

Figure 3.6, Illustration of a scenario tagging process using ASAM OpenLABEL

 17

OpenSCENARIO format describes scenario parameters using concrete values, the parameters

within the returned OpenSCENARIO file are set to be the mid-value within the ranges defined in

the SDL.

The test case generator can be divided into two different settings: the initial iteration, and

subsequent iterations. During the initial iteration, if the SDL level 2 is used for the execution, a

user-defined generation algorithm can be used to pick the starting values for the scenario

parameters within the defined ranges. If the OpenSCENARIO file is used for the initial execution

instead, the initial values are already given, which are the mid-values. For the subsequent

iterations, optimisation algorithms can be implemented to intelligently select the parameter

combinations for the next test case based on the analysis of the execution data.

For designing the V&V framework in general, the type of optimisation algorithm is not restricted,

it serves the purpose of exploring the parameter space set out within the scenario and identifying

edge-cases. Within the V&V framework used in this project, Bayesian optimisation

(Gangopadhyay et al., 2019) has been used to fulfil such functionality. For any given concrete

scenarios, the optimiser learns parameter values by observing the scenario output; the newly

identified parameter values drive the SUT to violate its pass criteria.

The high-level operations of the Bayesian optimisation algorithm can be divided into two aspects:

1) the identification of meaningful combinations of test parameters, 2) the identification of

multiple sets of parameter combinations for non-convex optimisation problems. To illustrate the

difference between these two aspects, Figure 3.7 (Gangopadhyay et al., 2019) visualises the

optimisation problem the algorithm is trying to solve. Each of the red dots represents a

meaningful combination of the test parameters, described in aspect 1. However, across the

parameter space, there are multiple red dots representing different clusters of interesting

regions. Aspect 2’s task is to identify these local regions (indicated by the blue grid at the top)

to allow aspect 1 to operate and find the best combination of parameters within each region.

Hypothetically, an example of aspect 1 optimisation could be that wet road conditions cause

more collisions, therefore wet road scenarios form an interesting region and within this region

there is a significant combination of parameters. However, as shown in the figure above, there

could be multiple feasible regions of local optima that can all lead to failure of the system. For

example, there might exist another interesting region where the road is icy, for which the

Figure 3.7, Illustration of the optimisation parameter space

 18

scenario parameters could be very different from the wet road scenario cluster. The second

aspect is developed to explore all the possible sets of parameter combinations, not only to

identify one set of failure conditions.

Execution

The execution can be done in different environments – virtual, real-world, or a hybrid (XiL). As

illustrated in the previous section, as the environment moves from virtual to real-world, the

resource demand (time, cost etc.) will increase, and the number of executions will decrease. At

WMG, several simulation tools have been integrated with the V&V pipeline either in the context

of industry collaborations or as internal capability development. The Zenzic Phase 3

Interoperable Simulation project has developed a distributed simulation architecture for

execution, which includes the SUT and simulation software that the V&V pipeline interacts with.

The various components involved across both projects are all placed at different nodes and

connected via a common network. This will be elaborated on further in the next section. Further

building on the simulation execution, scenarios created and stored so far can also be executed

in the real world. For example, the OmniCAV project (Brackstone et al., 2019) - funded by

Innovate UK and the Centre for Connected and Autonomous Vehicles (CCAV) – has executed

several scenarios in a real world environment. In addition, scenarios can also be executed within

mixed environments such as the 3xD autonomous vehicle testing simulator at WMG, where

physical vehicles are able to drive within a virtual environment, as shown in Figure 3.8.

3.6 Test case analysis

Upon the generation of the test cases and also the execution of them, the test case analysis can

be performed. Both the runtime analysis and post-execution analysis can be performed using

the V&V framework introduced in Figure 3.1. The analysis stage is further divided into three

parts, covering different angles of verification in order to narrow down the test case selection to

a useful and manageable output.

Figure 3.8, The 3xD simulator at WMG

 19

1 Has the intended test case occurred?

The first step of the test case analysis is assessing whether the intended test case has taken

place. In SDL a behaviour tree can be constructed providing the means for monitoring and

assessment of the test case progress. SDL and similar languages that are executable within

simulators will contain a specific set of initialisation conditions, manoeuvre sequences, trigger

conditions and exit conditions, all of which can be monitored during the execution of the scenario

using progress monitoring. The completion of the intended test case will only occur if all of these

aforementioned conditions are satisfied in the intended order. A behaviour tree allows for a

visualisation of these conditions such that the executed scenario can be assessed against its

intended counterpart.

Figure 3.9 (Zhang et al., 2021) illustrates an example behaviour tree that consists of both

parallel and sequential activities. On the main branch, it has Initialisation, Manoeuvre1 and

Manoeuvre_set in a sequence. Within Manoeuvre1, it has action1 and exit_cond1 in parallel

relation with a success on one criteria. This means that whichever node within the parallel

relation finishes this tree branch will succeed. Within Manoeuvre_set branch, it contains the

manoeuvres for both actor 1 and actor 2, along with their exit conditions. By using such a

behaviour tree implementation, it provides the ability to assess which node has been completed,

terminated, failed or is in-progress. In the example, Initialisation is completed and Manoeuvre1

is completed as well by the exit_cond1 being satisfied. However, within Manoeuvre_set the

actor2_manoeuvre is failed due to its exit condition failed. Such information generated by the

behaviour tree implementation is used to assess whether the intended scenario has occurred.

2 Has the test case passed/failed?

If the previous assessment result is yes, the test case data will then be passed to the pass/fail

assessment function. However, if the assessment result is no, the test case will be checked

against a pre-defined iteration limit.

Figure 3.9, Example behaviour tree progress status of a test case

 20

For the pass/fail assessment, several different types of criteria can be used including: STPA-

related, Highway Code derived, ODD-related or a set of generic criteria. Each of the STPA

scenarios has its own specifically tailored pass criteria, however such criteria need to be

converted into a machine-readable format and made accessible to the ADS. In a previous

publication from WMG (Chen et al., 2020), the details of STPA-based scenario generation and

evaluation are illustrated.

The ODD-based evaluation method uses the ODD specification of the ADS to form a safe

operating boundary and evaluates the simulation ground truth data against the boundary during

runtime. At any given point, the ADS could be inside or outside of its ODD, and this can then be

used to assess its ability to maintain within its ODD. The ground truth data can be retrieved from

the simulator during runtime; such ground truth can be then filtered to only contain the

attributes listed in the ODD taxonomy, and subsequently converted into a common intermediate

format. In addition, the ODD specification can be parsed and converted into the same

intermediate format. An ODD assessment module then compares the two intermediate formats

derived from the ground truth data and ODD specification, and outputs whether the system is

inside or outside its ODD The Highway Code-converted Digital Highway Code (DHC) is developed

to serve as an oracle and evaluate the ADS’s ability to obey the regulations. The DHC model

contains ODD elements as well as the behaviour elements, with each individual Highway Code

rule being analysed and converted into a machine-readable format. An ontology framework is

used to represent the domain model and the rules, and the ontology reasoner is used to perform

runtime assessment of the ADS. In addition to the STPA-based, ODD-based and DHC-based test

case pass/fail assessment, a set of generic assessment criteria can also be used. For example,

a fixed timeout is used to terminate test cases if needed. Collision criteria are also implemented

to fail test cases whenever a collision of the system is detected. Other criteria such as lane

keeping, average speed limit, and maximum speed limit could be included.

3 Has the maximum iteration of the test case been reached?

Based on the pass/fail assessment, if the result is passed, the workflow is then sent to check

whether the maximum iteration for the test case has been reached. If the result is failed, then

the current test case parameter combination will be logged, and the testing of the current

scenario will be terminated. The maximum iteration is set to stop a large number of loops for

the test case generation within the same logical scenario.

3.7 Scenario-based evaluation at implementation level

This section illustrates the implementation architecture of the V&V workflow. As shown in Figure

3.10 (Zhang et al., 2021), the necessary functions are modularised into four parts: Test Manager,

Simulation, Test Case Generator, and Test Case Analyser. The Test Manager is in charge of

orchestrating the whole workflow. All the communications are established between other

modules and the Test Manager. Simulation contains the environment simulator, the traffic

simulator and the SUT. The Test Case Generator is for generating concrete test case parameters

and optionally converts the scenario into other formats (rather than the WMG SDL, OpenX) prior

to execution. The Test Case Analyser contains test case indexing in order to obtain the scenario

parameter variables, and test case evaluation for checking the three decision boxes mentioned

in the previous section.

 21

The whole workflow is initiated by the Test Manager which is integrated with the scenario

database for selecting the logical scenario and passing the scenario information to the Test Case

Generator. A concrete test case is then obtained either by using the average values of the

parameter value ranges in SDL, or using the already defined values in the OpenSCENARIO 1.x

file. Optionally, conversion into other desired scenario formats can be performed before sending

the prepared test case back to the Test Manager. Meanwhile, the Test Manager also sends the

scenario information to the Test Case Analyser for indexing. Upon receiving the generated test

case, Test Manager sends the converted test case to Simulation, and it then sends a run signal

to start the simulation. During runtime, live data is communicated between the Simulation and

Figure 3.10, Implementation architecture of the V&V workflow

 22

Test case evaluation module. The Test case evaluation will then produce the evaluation results

and send back to the Test Manager. The Test Manager then stops the simulation run, and checks

the evaluation results against the three decision boxes. Based on the outcome, the Test Manager

will:

1 Select a new logical scenario to test,

2 Command to generate new test cases under the same logical scenario.

Such process will continue until all the intended logical scenarios have been tested. Please note

that this implementation architecture is the workflow currently used within WMG; for the Zenzic

V&V project, it has been modified slightly to integrate with the simulation execution framework

developed as part of the Zenzic Phase 3 Interoperable Simulation project.

 23

4 | Framework integration

4.1 Integration with the Zenzic Interoperable Simulation ecosystem

To integrate the V&V implementation framework with the Zenzic Interoperable Simulation

ecosystem, the elements of the functional workflow diagram (Figure 3.1) were divided into three

individual blocks. As shown in Figure 4.1, the Zenzic system integration layer sits at the centre

of the Zenzic V&V integration work. The integration utilises a common network to enable

communication between different operational nodes that are connected to this network. At the

top left, it connects to the Safety PoolTM scenario database via Safety Pool’s API. In addition, it

also connects to the SUT node, and the simulation execution node. The majority part of the WMG

V&V node is seen at the bottom right, which sends the scenario ID to the Zenzic system

integration layer and receives execution output from it.

In this case, based on the original WMG V&V framework, the following modifications were made:

1) the database API call was made by the Zenzic system integration layer rather than the WMG

V&V module, 2) the simulation execution and the SUT were not hosted within the V&V framework,

but were connected as a separate node to the Zenzic system integration layer. The rest of the

V&V framework largely remained the same. The following sub-sections illustrate the scenario

preparation and retrieval process, the construction of the data transmission schema between

the Zenzic system integration layer and the V&V module, and the use cases performed during

the Zenzic V&V testing process.

Figure 4.1, Zenzic V&V integration functional diagram

 24

4.2 Scenario preparation and retrieval

The preparation of scenarios used in the Zenzic V&V project contains several stages: 1)

construction of the SDL scenarios, 2) conversion from SDL to OpenSCENARIO/OpenDRIVE, 3)

custom modifications to the OpenSCENARIO file to fit the UTAC testbed OpenDRIVE specification,

4) confirmation of suitable parameters for updating with the Zenzic system integration layer and

the execution node, 5) upload onto Safety PoolTM database and generation of the corresponding

scenario ID, 6) enabling API calls from the Zenzic system integration layer to the database for

scenario retrieval.

Since the scenarios used in this V&V project were agreed to be Euro NCAP (Euro NCAP, 2017)

scenarios (which will be described in detail in Section 4.4), the creation of SDL scenarios involved

manual translation, based on the tables and diagrams found in the relevant Euro NCAP

documentations (NCAP, 2020)(EuroNCAP, 2017), to SDL level 1 and level 2.

Upon the generation, a toolchain is available to convert from SDL level 2 description into the

equivalent OpenSCENARIO 1.1 and OpenDRIVE 1.6 format. The building blocks of this

conversion toolchain include an SDL parser based on the pre-defined grammar of the SDL level

2. The parsed information is then sent to a generator based on the OpenSCENARIO/OpenDRIVE

schema, and an established mapping between the SDL elements and OpenX elements; the

generator then outputs the corresponding OpenSCENARIO and OpenDRIVE files. Please note

that since the scenery description within the SDL is location-independent, and its features are

based on the criteria from the relevant documentation, the generated OpenDRIVE file is also

location-independent and is generic. The term ‘generic’ indicates that the toolchain will

constantly generate the corresponding OpenDRIVE file purely based on the SDL description of

the scenery; the road and lane IDs used within the file are generated by a default setting within

the toolchain.

For the Zenzic V&V project, the virtual ’Mile Straight’ of the UTAC testbed was used. To adapt

the converted OpenSCENARIO file to the UTAC-based OpenDRIVE file, a manual modification

was made on each of the OpenSCENARIO files to select the suitable road and lane IDs for the

entity actions. All the Euro NCAP scenarios take place on a straight single road, therefore the

‘Mile Straight’ within the UTAC testbed was chosen as the scenario initialisation and testing

location.

As described in Section 3.5, during the V&V process, the scenario parameters need to be

constantly updated, while the scenario storyline is kept the same. The SDL level 2 description

allows for easy modification of the scenario parameters, with the user able to simply replace the

range values with different concrete values during each iteration. However, in the Zenzic V&V

process, the executed files were chosen to be OpenSCENARIO and OpenDRIVE; to easily update

the corresponding scenario parameters, they are written inside the ‘parameter declaration’

section of the OpenSCENARIO file. As seen in Figure 4.2, the parameter declaration section, all

the parameters that need to be updated are gathered in here, together with their default value

and parameter type. Then within the scenario storyboard, only the variable names are

referenced. During the Zenzic V&V process, only the values within the parameter declaration

section were updated while the rest of the file remained the same.

 25

The last step for the scenario preparation includes the upload of the scenario to the Safety PoolTM

database and gathering of the corresponding reference ID, this ID is then used during the actual

V&V activities to be sent to the system integration layer for each logical scenario. The system

integration layer will then query the OpenSCENARIO file from the Safety PoolTM database using

such scenario ID.

4.3 Simulation data and test case parameters

During the integration between the V&V framework and the Zenzic system integration layer, the

data format used for communication was Google Protocol Buffers (Protobuf in short) (Protocol

Buffers). It is a language-neutral, platform-neutral, extensible mechanism for serialising

structured data; it is smaller, faster, and simpler than the xml format. In order to use the

Protobuf format, the process is divided into two steps: 1) the definition of the message template,

including all the possible scenario parameters together with their data type, 2) sending the actual

message during the V&V activities.

Two different message elements have been defined for the Zenzic V&V integration: the message

from the V&V module to the Zenzic system integration layer, and the message from the system

integration layer back to the V&V module.

For the message sent from the V&V module to the integration layer, the required message

contents are simMode, scenarioID, testRunIteration, and updated parameters. simMode contains

three enumerators, which are ‘first run’, ‘continue’, and ‘stop’. ‘first run’ does not require inputs

of the scenario parameters as they are based on the default values in the OpenSCENARIO file,

‘continue’ indicates these iterations will contain corresponding parameter updates, and ‘stop’ is

used after the last iteration to terminate the whole process. The scenarioID is a unique identifier

the database assigned to each scenario, the testRunIteration is used to indicate the current

iteration number, and the updated parameters contain the parameter names as found in the

Figure 4.2, Illustration of parameter declaration within the OpenSCENARIO file

 26

parameter declaration section of the OpenSCENARIO file, together with the updated parameter

values. Please note that the updated parameter section can contain any number of updates

between one and the number of parameters in the parameter declaration section.

For the message sent from the integration layer back to the V&V module, the

testGroundTruthRecord of each execution is recorded and sent to the V&V module for post-run

analysis. The information included within this ground truth record is scenarioID, testRunIteration,

and timeStampedGroundTruth. The time stamped ground truth data further contains ego ground

truth, environment ground truth, scripted vehicle ground truth, and VRU (vulnerable road user)

ground truth data. In here the ground truth data is obtained directly from the simulation node.

The ego ground truth contains the ego vehicle’s road lane position, lane type, junction type,

left/right lane marking types, collision information, position in the world coordinates, velocity,

orientation, acceleration, gear, throttle, brake, steering. The environment ground truth contains

cloudiness, precipitation intensity, wind intensity, light intensity, fog level, and the road wetness.

The scripted vehicle ground truth contains the agent’s name, road and lane position, velocity,

acceleration, and the world coordinates. The VRU ground truth contains the VRU agent name,

the road and lane position, and the world coordinates.

4.4 Euro NCAP AEB use case

The SUT tested within the Zenzic V&V project was an autonomous emergency braking (AEB)

system. Across different partners involved in the Zenzic V&V work, the Euro NCAP scenarios

were chosen. They include Car-to-Car scenarios, as well as AEB VRU scenarios. Please note that

although the Euro NCAP use case was chosen, the V&V framework is independent to any specific

use case. To adapt the framework to different use cases, one would need to use the

corresponding scenario creation methods to obtain the related scenarios, and input the

corresponding assessment criteria.

Taking the traffic rule compliance use case as an example, at the scenario creation stage specific

test scenarios need to be generated which correspond to the individual rule or a combination of

rules. Each rule specifies what the driver can or cannot do when encountering a situation; from

this the assessment criteria can be obtained. For instance, one of the overtaking related rules

(Rule 162) from the UK Highway Code specifies that during overtaking, the overtaking vehicle

needs to ensure that there is a ‘suitable gap’ to the vehicle being overtaken. Such ‘suitable gap’

can become part of the metrics for the assessment of the scenario.

Euro NCAP Car-to-Car scenarios

Figure 4.3 (EuroNCAP, 2017) displays the three Car-to-Car Euro NCAP scenarios tested during

the V&V activities; they are Car-to-Car Rear Stationary (CCRs in Figure 4.3a), Car-to-Car Rear

Moving (CCRm, in Figure 4.3b), and Car-to-Car Rear Braking (CCRb, in Figure 4.3c). In all three

scenarios, the Global Vehicle Target (GVT) as indicated in Figure 4.3 is the scripted vehicle, and

the SUT is the rear following vehicle. In CCRs, the GVT is stationary and the SUT is moving

 27

towards it at two sets of speed ranges. In the CCRm, the GVT is moving at a slow speed while

the SUT is moving at a faster speed following the GVT. In CCRb, the GVT is performing a braking

action while the SUT follows behind.

AEB VRU scenarios

Figure 4.4 (NCAP, 2020) displays the three Euro NCAP AEB VRU scenarios used for the testing,

they are Car-to-Pedestrian Farside Adult (CPFA, in Figure 4.4a), Car-to-Pedestrian Nearside

Figure 4.3, Euro NCAP car-to-car scenarios

Figure 4.4, Euro NCAP AEB VRU scenarios

 28

Adult (CPNA, in Figure 4.4b), and Car-to-Pedestrian Longitudinal Adult (CPLA, in Figure 4.4c).

In CPFA, an adult pedestrian is walking towards the trajectory of the SUT from the farside. In

CPNA, an adult pedestrian is moving toward the SUT from the nearside. And in the CPLA, an

adult pedestrian is walking toward the SUT along the SUT’s trajectory from the front.

During both the car-to-car scenarios and the VRU scenarios, the V&V framework effectively

converged towards a parameter combination which encourages hazardous situations (i.e.,

collision in this case). For example, during the initial iteration of the CPFA scenario, the

pedestrian would reach the opposite side of the road even before the SUT reached the

pedestrian’s trajectory. Since the role of the optimisation module is to identify hazardous

situations, within the subsequent iterations, the SUT initial speed, the pedestrian target speed,

and the initial distance between the vehicle and the pedestrian were updated by the algorithm.

It can be seen in Figure 4.6, the initial SUT speed was constantly updated to higher values to

encourage early intersection between SUT and pedestrian. In the meantime, the pedestrian

target speed was updated to lower values, and the initial distance between the pedestrian and

the SUT was also decreased, thus encouraging a potential collision to occur. Similar performance

of the optimisation algorithm was observed across all the test scenarios. Figure 4.5 illustrates

the same parameter updates but using test case layouts; the arrows indicate the speed and the

length of them indicate the magnitude. Please note that these three parameters are not the only

parameters that were updated during the testing, but they are the most visually representative.

Figure 4.6 Examples of parameter optimisation

Figure 4.5 Visualisations of the test case parameter update

 29

5 | Simulation validation methodology

5.1 Dynamic elements validation method

When referring to the dynamic elements, there are four levels as shown in Figure 5.1.

At the most left side, the dynamic elements can be represented from the macroscopic traffic

level. At this traffic level, an un-accountable number of dynamic agents travel between a starting

point and a destination point through intelligently calculated routes. The behaviours of the

dynamic agents within the traffic are not explicitly controlled, but rather left for the traffic model

to control, which creates the ‘smart’ actors. Traffic properties are part of the ODD for an ADS

(Operational Design Domain (ODD) taxonomy for an automated driving system (ADS) –

Specification, 2020), it is therefore important to validate their performance against real world

traffic. An example use case could be – if the ODD of an ADS can handle highly congested

motorway conditions, such an ODD claim will need to be validated by setting the traffic behaviour

to match the characteristics of highly congested traffic (i.e., high density, low speed, large

variety of vehicle types, etc).

The second to the left is the vehicle level dynamic behaviour, this level targets at individual

vehicles rather than the macroscopic traffic. Vehicle level behaviours are commonly described in

scenario description languages such as the WMG SDL (Zhang, Khastgir and Jennings, 2020b),

and ASAM OpenSCENARIO (ASAM OpenSCENARIO 1.1.1). At this level, the trajectories, speed,

acceleration, and their temporal developments for a target vehicle will be explicitly stated. Please

note that it is not of concern as to how the vehicle’s internal systems achieve such behaviour at

this level.

The next level down represents the system level dynamic behaviour, in which the high-level

system components of an ADS are represented. Mapped to the WMG SDL concept, usages of

this level for validation are normally associated with the SUT’s internal behaviours. For example,

STPA-based scenarios (Chen et al., 2020) have the specific internal element section with their

SDL description to describe the SUT’s internal behaviours, as well as what a test engineer should

perform on the SUT’s internal system for each scenario (e.g., manually delay certain signal from

sending/receiving, therefore test the SUT’s backup system). The system level architecture of an

ADS can be broadly divided into four parts: sensing, perception, planning and control. The

sensing aspect will be explained later in this section at the sensor level dynamic validation.

Sensing converts the outside environment into machine readable format (i.e., a camera is

converting the shape and colour of objects into RGB values which the computer can interpret

and render). Perception will further take such converted information to process and generate

Figure 5.1, Different levels of dynamic elements

 30

ground truth (i.e., a human detection algorithm will detect the presence of a human based on a

list of RGB values). The planning algorithm will then process all the ground truth and generate

strategies for navigations, and the control part will take the actions to implement the strategy.

The validation at the system level will be discussed in more detail later in this section.

The last section of the validation is at the sensor level. Sensors are normally included in the

sensing part of an ADS system, which converts the environmental features into a machine-

readable format. It is crucial to have capable sensors within an ADS as their output can directly

impact all the subsequent processes. Within the industry, the development of sensor

technologies is usually handled by individual sensor suppliers rather than the system or vehicle

developer. However, ensuring adequate and compatible sensors or sensor models within the

system is important. Their validation approach will be covered later in this section.

Approaches for different levels of validation

Macroscopic traffic level

To describe the macroscopic traffic properties at a high level, there are three basic parameters

that define traffic, which are density, volume and speed. In addition, the traffic agent

composition (e.g., 10% truck, 5% motorcyclists) is also a key factor. Traffic elements form part

of the dynamic elements of an ODD (‘Operational Design Domain (ODD) taxonomy for an

automated driving system (ADS) – Specification’, 2020) and therefore are crucial parts of the

ADS safety assurance. Density defines how many vehicles on average are expected within the

observed road section, measured as vehicles per distance. Volume defines the rate of vehicle

appearance/disappearance at the observed road section, measured as vehicles per duration of

time. And speed defines how fast the vehicles will travel, measured as distance per time. One

can derive the third parameter by knowing the other two parameters, since volume = density

× speed. However, if only one parameter is known, the traffic will not be uniquely instantiated.

Figure 5.2 illustrates cases where different traffic shares the same value when only one

parameter is specified. For the first case, only the density is specified which is at four vehicles

per section; both traffic 1 and traffic 2 can satisfy such a requirement, and the traffic speed

Figure 5.2, Illustration of traffic situations when only one parameter is specified

 31

cannot be fixed to instantiate a unique traffic model. Similarly, case two only specifies the traffic

volume which is at one per minute; this also cannot instantiate an unique traffic model. At case

three, although the traffic speed is specified, this allows variations in the traffic density, and

consequently the traffic model is not uniquely instantiated. Therefore, at the traffic level, by

utilising these three traffic characteristics one could establish the baseline for a traffic level

validation process. Furthermore, if a traffic model spans across a large area, sub-divisions of the

traffic can be validated individually.

Vehicle level

Vehicle level comparisons can be divided into ego behaviours and non-ego behaviours. The

impacting factors on ego behaviours at the vehicle level can propagate down into the system

and sensor levels of simulation. However, to examine the ego behaviour, vehicle level

comparison against the real world recorded data can still be performed to provide an overall

benchmark for a vehicle level validation. The non-ego behaviours, on the other hand, are key

for the correct representation and execution of the intended scenarios. Within a concrete test

case, the non-ego behaviours are desired to be deterministic such that the same test case can

be reproducible. In SDL level 2 (at the logical scenario level), the non-ego vehicle behaviour is

represented using manoeuvres, speed, acceleration, relative positions etc. In lower level

languages such as OpenSCENARIO 1.x (‘ASAM OpenSCENARIO 1.1.1’), individual trajectories of

the non-ego actors can also be defined. Therefore, the accuracy of simulation execution can be

assessed using both the trajectory information and the higher-level manoeuvres. As shown in

Figure 5.3, at the most detailed level, by comparing the deviation between real world non-ego

trajectories with the simulation result, the assessment can be performed. Moving one level up,

the trajectory can be represented using lateral and longitudinal behaviours. The next level up

combines the lateral and longitudinal actions into combined manoeuvres, for example ‘turn left’

or ‘change lane right’ are both results of lateral and longitudinal actions. At the top level,

behaviour can be expressed in turns of missions, for example ‘follow lead vehicle’ or ‘keep safe

distance’; they cannot be simply expressed as particular manoeuvres, and they can be

complicated as well as simple dependant on the lead vehicle behaviour in this case.

Based on the trajectory comparison option, a recent study (Tenbrock et al., 2021) compared the

behavioural information between physical data and virtual result. As shown in Figure 5.4

(Tenbrock et al., 2021), the individual vehicle trajectory data are extracted from various traffic,

and converted into OpenSCENARIO 1.1 format, which was then executed in the esmini and Carla

simulators. By performing the comparison, the deviation between the trajectories exhibited by

Figure 5.3, Different abstraction levels of vehicle level behaviour

 32

the scripted agent using OpenSCENARIO and the raw data can be quantified. Furthermore, other

vehicle level data such as velocity and acceleration can also be compared between the virtual

and real-world data. As shown in Figure 5.5 (Tenbrock et al., 2021), the velocity data is plotted

over time between the real-world data input and the behaviour extracted from the esmini

simulator.

System level

An ADS contains perception, planning and control as the high-level core system components;

please note here the sensing part is treated as the step before reaching the ADS core functions

so that the sensor model can be isolated. As shown in Figure 5.6 (Tas et al., 2016), the

perception, planning (cognitive decision) and control (action) form the cognitive system. The

interface between the cognitive system and the outer environment is achieved through sensing.

Each part within the ADS functions can be further broken down into sub-system level

components; Figure 5.7 illustrates an example information flow between different modules (Tas

et al., 2016). The sensing layer includes all the sensors which includes (but are not limited to)

GPS, IMU, vehicle network, camera, radar, lidar. The sensor layer captures the outside

environment and converts it into a machine-readable format for the perception layer. The

perception layer is in charge of recognising the captured environment information and identifying

the vehicle state as well as understanding the scene around the vehicle. This recognition and

understanding can be established from RGB format data (from the camera) to recognise objects

(e.g., pedestrians) within the RGB value arrays. Since the input to the perception layer contains

multiple sensor outputs, the final stage of the perception layer will be to fuse the sensor

Figure 5.4, a) information extraction from physical data, b) re-creation of the

scenarios in a virtual environment

Figure 5.5, Comparison of vehicle velocity between simulation and real-world

 33

information together to form a unified understanding of the surrounding. The fused information

will then be passed onto the behaviour and motion planning, and vehicle control and actuation

layers. Planning will calculate the most suitable path to achieving the objective of the navigation,

however it will not control the system to move at this stage. The control and actuation module

will then take the path information to work out the actuation values (such as steering, brake,

throttle) for the system to smoothly move towards the target.

At the system level, the evaluation can be made directly on the output of the sensor model;

identical sensor data shall be used as input to both the physical and digital twin versions of the

ADS. By comparing their outcome, the representativeness between the virtual and physical

models can be established. To examine the system level similarities, there are two approaches:

1) directly compare the system level output, 2) compare the vehicle level behaviours since it is

a function of system level behaviours. In approach 1, the internal data at any stage can be

compared directly between the two environments. For example at the vehicle level, the throttle

or steering values can be compared. At the internal level, the outcome from various sub-systems

can also be compared, such as the calculated path from the path planning module. For approach

2, the behaviour at the vehicle level will be used for the validation. As mentioned earlier, the

vehicle level behaviour is a function of the system and sub-system level behaviours, since they

propagate upwards and affect the vehicle behaviour. Therefore, comparing how the vehicle

behaves between the simulation and physical worlds will indicate the system level validity.

Figure 5.6, A cognitive system interacting with its environment

Figure 5.7, An example information flow diagram between different modules

 34

Sensor level

Sensor level validation focuses on the sensing module; referenced to Figure 5.7 it will be

comparing between the environment input and the sensor module output across different

environments. Since here the key is to identify the delta between virtual and real-world sensor

models, the environment information is not a variable in here. Furthermore, sensor distortion or

degradation modifications can also be applied to the virtual sensor model, and assessed together

in an integrated unit against the real world sensor with degradation or distortion.

5.2 Static elements validation method

Background

The static element validation method used in this project focuses on evaluating the virtual

representation of the 3D objects as compared to the real-world. The method proposes to use a

lidar system to devise similarity metrics between the real-world based 3D objects and a virtual

digital twin. Although a lidar system is used to illustrate the methodology, such comparison can

be generalised to all 3D objects to allow validation using other sensors such as cameras or radar.

The overall workflow includes three stages: (1) collect the real-world data, (2) synthesize the

virtual map and virtual testing environment, (3) perform the same data collection within the

virtual environment, (4) develop a method for comparing the virtual world lidar scans and real-

world lidar scans.

During the development phase of this method, that uses 3D object comparison to validate the

virtual environment, four main criteria have been established:

1 Suitability for the data type

A given static element object within the environment is created from a lidar environment scan.

This assumes that it is large in scale and complex, unlikely to be convex and will be unable to

be described through a single shape. Which is generally different to the type of model created

through using CAD systems.

2 Automation

The method should be able to function without manual interference or prior knowledge of the

model. This will allow for the comparison to be done on many pairs quickly and will allow

validation to completed without human bias.

3 Shape preserving

Ideally the method should maintain the shapes’ original structure without deformation. This is

to avoid loss of information and fidelity for the comparison.

4 Practicality

This mainly includes complexity, runtime, and robustness, meaning it will be able to handle large

and complex objects quickly and without breaking even if the data is not exactly as expected.

 35

To illustrate the methodology proposed in the Zenzic V&V project, it is important to review the

current approaches documented in the literature for comparing 3D objects. The most direct

comparison method for lidar and point cloud data is to make a one-to-one comparison using the

mean distance between corresponding points as demonstrated in (Zhou et al., 2020). The

comparison based on this method is either done on a point-by-point basis, or by using a method

that takes a least squares average plane (of all the points within a region) around a target point

and finds the shortest distance between this plane and the original point. The biggest

disadvantage of this method is it requires manual rotational alignment of the two clouds to allow

corresponding points to be compared. Other methods (Huang and You, 2012)(Novotni and Klein,

2001) tried to tackle the alignment issue and allowed for automatic alignment between the

objects by identifying key points as references, however they do not account for any

discrepancies in the point cloud data, as a small discrepancy in the alignment will cause a large

effect in the comparison score. Similarly, another method used an underlying surface created

using a 3D Fisher vector known as DPDist (Urbach, Ben-Shabat and Lindenbaum, 2020), but

such approach uses neural networks which requires many sample models to train. The method

in (Gotoda, 2003) suggests turning a 3D object into many 2D silhouettes from different

perspectives; the most similar silhouette pairs are identified between the two objects and the

dissimilarity is calculated and summed over all pairs. This method would work best with convex

objects that have distinct silhouettes, whilst the point cloud maps for autonomous driving usage

will have lots of detail that will be obscured by the silhouette process (obstructed by buildings

etc). The method described in (Muliukha, Lukashin and Ilyashenko, 2019) uses a comparison of

the distribution of pairwise distances between a sample of points on the surface of the object.

The distribution for each shape is found by taking a sample of points on the surface of the object,

finding the pairwise distances between them and storing those in a histogram as shown in Figure

5.8. The method is also indifferent to the alignment of the object as the distribution is inherent

to the shape and it is shape preserving. The method runtime can be controlled by the number

of points sampled and is unaffected by the size of the object.

Proposed methodology

The high-level workflow for the static element validation is summarised in Figure 5.9. As can be

seen the process starts with a data collection in the real world using a lidar sensor; a point cloud

map can then be generated based on the mapping data. A virtual voxel map can be created

based on the point cloud data, which will enable a virtual vehicle to perform a virtual scan within

Figure 5.8, Demonstration of cube to histogram conversion

 36

this voxel map, creating a virtual point cloud map. A comparison of the point cloud characteristics

can then be performed to produce a similarity score between the virtual point cloud map and

the real-world point cloud map. The difference between the two can be used to assess the fidelity

of the simulation environment. Based on this high-level workflow, the sub-sections below will

describe each step in more detail.

The real-world data collection can be achieved by using a 360-degree lidar mounted on a vehicle,

while the vehicle travels along an area of interest to collect point cloud data. The point cloud

data is then transformed into a voxel environment map. The voxelisation can be performed using

a 3D cubic grid of specified dimensions; if a point cloud data is present inside a cubic grid then

it is filled in as a voxel, which is a solid cube that can be thought of as a three-dimensional pixel.

Then a simulated lidar can be placed on a virtual vehicle which travels the same route through

the voxel environment as the vehicle did through the real world, thus producing a simulated

lidar scan. These two sets of scan data will be the input to the data analysis box.

Adapted from the method documented in (Muliukha, Lukashin and Ilyashenko, 2019), the

proposed comparison method works by taking a sample of points on the surface of each object.

The pairwise Euclidean distances for all these points are then calculated and stored in a 2-

dimensional matrix. These distances are normalised with respect to the maximum distance of

each object and converted into a histogram with a fixed number of evenly spaced bins. Instead

of storing frequency in the histogram, probability density is used instead. Once the two

histograms are created, these are discrete probability distributions that represent the shapes.

These distributions can be compared using the sum of the absolute differences between the

columns of the histograms.

The main impacting factor of this method is the element of inconsistency created through the

random sampling. This can be mitigated by taking a large enough sample of points which will

Figure 5.9, Static elements validation workflow

 37

give a more stable distribution of distances for the object. Another key factor that affects the

consistency of the method is the number of bins created for the histograms, as having a greater

number of smaller bins will allow for a higher fidelity comparison as smaller differences in

distance will be accounted for, this however does also lead to a greater effect on the score from

the random sampling. Since the algorithm has O(n2)O(n2) complexity with respect to the number

of sample points, it is important to find the highest number of sampled points that still has an

acceptable runtime.

5.3 TRL level assessment for the simulation

This report so far has introduced both the dynamic and static elements within a simulation

environment, together with their validation approach. This section will propose a Technology

Readiness Level (TRL) assessment framework where the validation comparison metrics can be

used as input to generate the corresponding overall qualification of the virtual testing tools.

Within the United Nations Economic Commission for Europe (UNECE) Validation Method for

Automated Driving Subject Group (VMAD SG2) on developing a credibility assessment

framework for simulation and virtual testing, four properties of a virtual testing platform have

been identified for carrying out the credibility assessments, which are: Capability, Accuracy,

Correctness and Usability. Based on this foundation, further quantifiable definitions for each

of the properties above can be developed and introduced. Capability indicates what the virtual

testing tools can do/offer; a direct measurable property would be the overall coverage of the

physical environment testing data required. In this case, a 100% coverage would mean that the

virtual testing platform can provide data output for all the required functionalities. Accuracy

can be further divided into two aspects: 1) how well the virtual testing platform is performing

regarding the reproducibility (i.e., how repeatable are the tests?) and 2) how well the virtual

testing output correlates to the physical testing output. Both aspects of the accuracy can be

quantified and assessed against a user-defined threshold. Correctness in the quantifiable

definition represents the correlation between the virtual data and physical test data, i.e., whether

the virtual data and algorithms can constantly output data that share strong correlation with the

physical data. It differs from the accuracy since the correctness indicates correlation rather than

the direct comparison of absolute values; a constant negative correlation will still result in a

reliable performance given that the necessary conversion is made. The usability, on the other

hand, is not directly quantifiable, as it represents the training and experiences needed to perform

the virtual testing. This is rather a qualitative measure than a quantitative measure. In the

proposed TRL assessment framework, usability will not be included, however it can be an

extension to the scheme and form the wider qualification scheme.

The flow in Figure 5.10 illustrates the assessment framework based on the output information

from virtual and physical environments. First the capabilities of the virtual testing tool are

calculated, compared with threshold 1, and if the threshold is not reached then the virtual testing

tool will be failed. If passed, the data will then be used to calculate the accuracy. If the accuracy

reaches threshold 2, the virtual testing tool will pass the quantitative validation with gold

standard. If the accuracy threshold is not reached, the correlation between the virtual and

physical data will then be calculated and compared with threshold 3; if strong correlation can be

established then the virtual testing tool will pass the quantitative validation with silver standard.

 38

If there is a weak correlation then the virtual testing tool will be disqualified. In a final stage, a

user can choose to assess the usability also, and the previous pass result can then be assessed

against the usability requirements to determine the final overall qualification.

Figure 5.10, TRL assessment framework

 39

6 | Stakeholder engagement

The stakeholder engagement activities undertaken as part of this project have shaped the

creation of the UK Connected and Automated Mobility Roadmap: Simulation to 2030. An

interactive version of this roadmap, and accompanying report, can be found through Zenzic’s

website - zenzic.io.

6.1 Introduction

Background

The stakeholder engagement activity provided the opportunity to gather broader views on ADS

simulation, including potential simulation business demand, and facilities needed for ADS

simulation verification. A group of leading industry experts were identified as stakeholder

representatives. 1-to-1 interviews were conducted during September and October 2021, and

one multi-stakeholder meeting was conducted in September 2021.

Structure to this study

This study is presented in two parts:

• Section 6.2 provides information about the contributors and the questions asked

• Section 6.3 provides the contributors’ responses and analysis

6.2 Stakeholders

This section provides a summary of the contributors.

Type / category

Contributors

Organisation size / type Number

SME 9

LE 2

Public 3

University 2

 40

Contributors

Role Number

Developer 6

Supplier 4

Regulator 2

Researcher 3

Consultant 1

Experience level

The contributors had a variety of experience levels with ADS research, development, and

assurance.

Contributors

Personal ADS experience level Number

<1 year 0

1-2 year 5

3-5 year 7

>5 year 4

Simulation questionnaire

Topic Question

Development What is your vision for the use of simulation in highly automated vehicle

development?

What about IP protection if sharing models, particularly supply chain?

Assurance What is your vision for the use of simulation in highly automated vehicle

assurance?

 41

Use of in-service data for continuous improvement of models?

How is confidence in simulation results achieved?

Services Who undertakes simulation, and who monitors/reviews simulation?

What is the role of national digital twin providing operational data for e.g.

routing, asset management?

Current and anticipated industry needs for 3rd party simulation services

Industry

needs

The potential for interoperable simulation to deliver value/benefits for the

industry

Industry expectations for simulation customer experience

6.3 Gathered input views

This chapter provides a collation and analysis of contributors’ responses.

Coverage and justification

1 Simulation for development

ADS test and verification requires significant mileage testing, which cannot be covered by

physical testing alone within sensible development timeframes. Simulation is needed to

efficiently cover all test and verification work needed. Specific test cases arise which cannot be

recreated in physical testing. Edge cases emerge which are not discovered through physical

testing. Automated simulation is needed to investigate these test cases with sufficient parameter

variation coverage and to improve simulation efficiency.

Simulation is needed to test all layers of ADS controls, in particular to examine the perception

performance and the accuracy of object identification and placement. Human-machine

interactions need to be investigated in a simulated environment before physical testing, to

understand potential behaviour safely or assess operation in line with user expectations, which

may vary, therefore other road users are included in simulation.

2 Simulation for assurance

There is a contrast between the existing assurance approach, which prescribes vehicle

functionality in precise conditions, compared with ADS operation, where the amount of variation

can no longer be prescribed. Assurance bodies need to consider the variability, and assess overall

vehicle safety, rather than assess the tolerance to a prescribed function. Assurance auditing of

the overall vehicle safety needs to assess the coverage, requiring a sufficient selection of

scenarios to cover the ODD. The high number of scenarios and test cases involved can only be

assessed efficiently by simulation, supporting physical testing. The manufacturer and operator

 42

(as the ODD “owners”) should propose the set of scenarios for audit, and the selection of

simulation and physical testing for these scenarios. Too much reliance on simulation, where

physical testing would have succeeded, will not be accepted. In particular, the simulation results

must demonstrate where scenarios within the ODD cannot be sustained.

If in-service Software Over-The-Air (SOTA) updates will be permitted, which alter the ADS

behaviour (not currently permitted), the assurance or re-certification activity will need to be

supported by simulation. In-service gathered data and simulation could be used for performance

prediction, which may lead to modified ODD tolerances and in turn updates to the ADS behaviour.

It should be noted that successful simulation also demonstrates confidence to potential operators

ahead of any deployment. As part of that, independent incident investigation may depend on

simulation to understand events and find appropriate recommendations.

Accuracy and verification

1 Fidelity

Current levels of simulation fidelity provide sufficient resolution to flag expected issues, however

work is required to improve fidelity to ensure trusted testing for other applications. Simulation

environments for path planning and vehicle control are more advanced, whereas the current low

fidelity of sensor modelling makes simulation for perception rather immature. Different tasks

require different levels of fidelity, and therefore a variety of simulation tools are used across the

toolchain. Modelling (the task of creating physical models of environments or components, and

software control models) should be differentiated from simulation (the task of setting up and

executing a time-dependent, or in some cases frequency-dependent, analysis). Key aspects of

ADS controls can be imported as software models, but the simulation setup is most relevant, in

particular the execution time step to be synchronised with target software run cycles and the

exchange of data between models.

2 Sensor modelling

Sensor modelling is an immature area and a major research aspect for simulation, since the

capability of current sensor models is limited in terms of the physics that are represented.

Physics-based models are important because many edge cases depend on physical phenomena,

which cannot be captured by empirical models. Sensor mounting introduces errors from ground

truth measurement, and resulting inaccuracies have to be represented in models. Inaccuracies

can also be amplified by piece-to-piece variation. Environmental factors should be represented

in the modelled environment, and the sensor model should react appropriately to environmental

factors on all physical dimensions. Other noise factors which distort sensor signals need to be

modelled to adequately evaluate perception performance. Sensor model development and

sensor model verification are burgeoning research areas.

3 Verification

Final results for ADS behaviour are the critical aspect for assurance, but these rely on verification

of constituent elements (each sub model and execution) of the simulation.

 43

As outlined in the Fidelity subsection-1 Fidelity and model verification (accuracy of physics

representation and control implementation) should be differentiated from simulation verification

(accuracy of computation). A broad range of test cases will be needed to build confidence,

especially to investigate the ADS performance limits. Verification datasets generally contain

comparative real-world data; many more Field Operational Trials (FOTs) will be needed, with

data collected from full ADS stacks, to build up sufficient evidence. Logged recordings of ADSs

in real-world operation can be replayed in simulation, and simulation models improved.

Motorsport practices (where measured data is used to improve simulation models, and human

drivers provide qualitative feedback about the recreation of physics in simulation) follow a similar

format.

An interesting approach to environment model verification and sensor model verification, is to

use a physical measurement of the environment to construct an initial digital twin, then simulate

the environment containing an ADS that will construct a digital twin of the simulated environment

it encounters, then replace the initial digital twin with the new digital twin from the ADS, and

repeat. Further repetition using re-constructed digital twins will witness degradation of the

simulated environment accuracy, and thus the effectiveness of the simulation can be evaluated.

Various levels of physical and virtual representation exist on the continuum from simulation to

physical testing. Further studies will be needed to build up evidence of the correlation between

real-world testing, controlled environments, laboratory tests, X-in-the-Loop, and desktop

simulation. Aspects of human-machine interaction on this continuum are also unknown. Edge

cases and identified issues can be explored in parallel between simulation and controlled physical

testing. Common criteria for acceptable and sufficient correlation between physical test and

simulation results are yet to be defined and require more investigation. These criteria will also

require definition of potential tolerances, along with distribution analysis, to find correlation with

predicted outcomes.

4 Validated scenarios

One source of scenarios is automated simulation, including other road users. This method can

be more likely to discover edge cases, but more careful validation is needed. The test cases

based on scenarios need to recreate the possible environmental conditions, ADS conditions, and

other road users, as closely as possible to trigger the same ADS behaviour as in the real world.

Construction of simple scenarios must be done first to prove correct behaviour before complexity

is increased (i.e., open roads first, followed by other static actors such as parked vehicles,

followed by one other dynamic actor, followed by multi-vehicle traffic, etc.). Confidence in

scenarios extrapolated from complex simulation is only possible after demonstrating correlation

of simple scenarios. Descriptions of the expected ADS behaviour need to refer to a publicly

accessible digital definition of an "ideal driver", which does not currently exist. This would be the

input for deterministic ADS controls and be the verification baseline for adaptive ADS controls.

The Highway Code provides a general guideline for the expected ADS behaviour. However,

digitising the Highway Code to be deterministic and quantifiable is challenging, and further work

will be needed.

 44

5 Validated tools and methodology

Manufacturers and operators need to convince assurance bodies that simulation results are not

only verified, but that simulation tools produce provably consistent results (i.e., tool validation),

and that the simulation tools are used correctly to do so (i.e., method validation). However,

assurance bodies are very unlikely to undertake simulation tool validation activities, so a

common approach will need to be defined to provide evidence that the simulation tools and

methods used are fit-for-purpose. These definitions will also aid repeated simulation when any

investigations are required in the case of unexpected events. Alongside tool validation and

method validation definitions, common approaches should be defined for data management,

which will facilitate the traceability required for investigations.

The definition of common approaches needs to include requirements to demonstrate tools and

methods are fit-for-purpose. These requirements should identify appropriate features but avoid

specifics of applications (such as unique scenarios), which may potentially introduce anti-

competitive preferences (similar to defeat device). It is unclear whether any definition of

common test cases will help tool and method validation, and this will need to be investigated.

Some developers may seek a defined list of accepted simulation tools from assurance bodies, as

a means to ensuring acceptable results. However, assurance bodies typically work with

manufacturers to review evidence for product assurance, rather than with tool developers to

assure tools. The exception to this may be direct dialogue between assurance bodies and leading

tool developers to improve understanding of each other’s expectations and plans, to avoid repeat

discussions with each manufacturer using their tools. (Dialogue between assurance bodies and

ADS suppliers follows a similar format).

While physical modelling tools often require significant investment in licences, hardware, and

training, such that manufacturers do not change tools unless absolutely necessary, ADS

simulation and toolchains are still developing. Therefore, developers are likely to continue to

employ multiple different tools with different strengths, such that single tool validation would

not be effective at this stage. Work by ASAM to define potential common approaches, such as

OpenSCENARIO, OpenCRG, OpenDRIVE, OpenLABEL, OpenODD, and OSI, will help with

interchangeability of models and tools in future. It should be noted that simulation tools cannot

be verified for functional safety, rather simulation results can be verified for accuracy, since so

many variables are involved in ADS simulation. It is the ADS behaviour represented in simulation

that must be verified for functional safety. Further work in defining common approaches, and

potentially reviewing evidence from manufacturers and operators, will depend on the support of

an expert group.

Users

1 Approach

As outlined in the1 Fidelity subsection, a variety of simulation tools are used across the toolchain.

Many developers use in-house created tools, maintained by an in-house simulation organisation,

specifically designed for selected tasks such as perception (using their preferred sensor suite)

or path planning (based on their required behavioural competences). Many developers also

prefer in-house simulation tools as this further protects IP.

 45

Third party tools offer the potential to investigate the entire ADS stack (and several tool vendors

are building frameworks to evaluate ADS stacks), or individual layers, but the immaturity of the

tools and the divergent technical solutions, mean they currently require extensive tailoring. Third

party tool providers will need to enable import of other third-party models into their simulation

environment. There is a particular opportunity to provide sensor models, where sensor suppliers

are unable to provide physical models of sufficient fidelity. It can be difficult for suppliers to

share detailed representative sensor models, since these often reflect IP of the sensor itself.

Alternatively, mimicking sensors with generic sensor models introduces potentially large errors.

Common approaches to tool validation, method validation, and data management, could help to

facilitate simulation activities by third parties. The involvement of an expert group in defining

common approaches, and potentially reviewing evidence from manufacturers and operators, will

support assurance bodies in the near-term (est. until 2030), but thereafter may facilitate

independent simulation by third parties, with appropriate evaluation in place.

2 Simulation responsibility / review responsibility

Presentation of safety assurance evidence from simulation is the responsibility of manufacturers,

backed up by verification of the results (through physical test comparison), tools, methods, and

data management. Review of the results and wider verification evidence is the responsibility of

assurance bodies. Assurance bodies will need to build up in-house skills to review simulation

results (potentially witnessing simulation execution) and verification evidence of the correct use

of simulation. They will also need to understand further actions to be undertaken when evidence

presented from simulation does not pass audit, if the simulation should be improved and re-run

or if additional physical tests are required.

In the near-term (est. until 2030), assurance bodies are very unlikely to undertake simulation,

either independent simulation or re-run manufacturers’ simulation. In the long-term (est. 2030

onwards), assurance bodies may build up in-house simulation execution skills to undertake

simulation, which may require gaining more access to manufacturers’ IP. This may well be

influenced by the decision to use standard test cases as part of the assurance process. In the

near-term (est. until 2030), assurance bodies are likely to be supported by expert groups and

third parties’ capabilities. Further stakeholders, such as operators and insurers, may seek access

to the outcomes of assurance bodies’ audit of simulation evidence, to confirm manufacturers’

data or insured risk levels.

3 Simulation services business need

Outsourcing simulation activity is not currently commonplace, potentially only to very few highly

trusted partners, due to developers’ need to protect IP. In general, current third-party simulation

services present difficulties for IP protection, and efforts to mask IP, such as conducting grey-

box simulation, do not provide sufficient analysis to offer value to developers. Simulation, using

protected third-party models, such as sensor models, supports a black-box approach. This offers

IP protection, but the limited visibility means alternative verification evidence is required from,

for example, the model provider. Co-simulation using multiple simulator tools in parallel,

potentially with cloud-based computing, is also useful to protect IP, particularly to avoid

distributing ADS control software.

 46

‘Interoperable simulation’ needs clearer definition. Stakeholders consulted expressed that

distributed multi-site co-simulation is unlikely to attract significant commercial usage. In general,

medium and large OEMs currently prefer to execute simulation in-house while small developers

have budgetary challenges with outsourcing simulation work. Interchangeable simulation will

deliver more immediate value to ADS developers since improvements to third party models can

then be integrated with other latest models.

Facilities for simulation verification and digital twins

Developers of vehicles that depend upon an environment model (i.e., to support localisation)

currently need to scan the ODD to generate a static model. Subsequent scans may be needed

to maintain static models up to date, which becomes a costly exercise. Several different

developers may need to scan the same location, leading to opportunities for efficiencies. There

is also significant value in the static model, or ‘digital twin’, to other potential users, such as

road transport management authorities. Therefore, a publicly produced and maintained digital

twin could become an important national asset. The most common facilities used by sub system

and component developers are sensor labs. These are also occasionally used by ADS developers

to undertake sensor characterisation. The most common facility used by simulation teams (from

any stakeholder) is high performance computing facilities or cloud.

Facilities for certification

If assurance bodies’ expectations for simulation require additional computing capabilities,

manufacturers are likely to expect assurance bodies to ensure fit-for-purpose computing

facilities are accessible (similar to arrangements for conventional vehicle tests) Other sectors,

such as aerospace and defence, have already addressed similar challenges around test facilities

for assurance, and developers believe there are opportunities for the automotive/ADS sector to

take onboard prior cross-sector learning.

 47

7 | References

ASAM e.V. Available at: https://www.asam.net/.

‘ASAM OpenLABEL1.0’. Available at: https://www.asam.net/standards/detail/openlabel/.

‘ASAM OpenSCENARIO 1.1.1’. Available at:

https://www.asam.net/standards/detail/openscenario/.

Balfe, N., Sharples, S. and Wilson, J. R. (2015) ‘Impact of automation : Measurement of

performance , workload and behaviour in a complex control environment’, Applied Ergonomics,

47, pp. 52–64.

Bock, F. et al. (2019) ‘Advantageous usage of textual domain-specific languages for scenario-

driven development of automated driving functions’, SysCon 2019 - 13th Annual IEEE

International Systems Conference, Proceedings.

Brackstone, M. et al. (2019) ‘OmniCAV: A Simulation and Modelling System that enables CAVs

for Al’, IEEE Intelligent Transportation Systems Conference (ITSC), 2020, pp. 2190–2195.

Available at: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8917103.

Chen, S. et al. (2020) ‘Identifying Accident Causes of Driver-Vehicle Interactions Using System

Theoretic Process Analysis (STPA)’, IEEE Transactions on Systems, Man, and Cybernetics:

Systems, 2020-Octob, pp. 3247–3253. doi: 10.1109/SMC42975.2020.9282848.

Dupuis, M., Hekele, E. and Biehn, A. (2019) ‘OpenDRIVE® Format Specification, Rev. 1.5’,

OpenDRIVE, (M), pp. 1–133. Available at: www.vires.com.

Esenturk, E. et al. (2021) ‘Analyzing Real-world Accidents for Test Scenario Generation for

Automated Vehicles’, in IEEE Intelligent Vehicles Symposium 2021.

Euro NCAP (2017) Euro NCAP 2025 Roadmap: In pursuit of Vision Zero, Euro NCAP Technical

Paper.

EuroNCAP (2017) ‘EUROPEAN NEW CAR ASSESSMENT PROGRAMME (Euro NCAP) - Speed

Assist Systems - Test Protocol’, (March).

Fagnant, D. J. and Kockelman, K. (2015) ‘Preparing a nation for autonomous vehicles :

opportunities , barriers and policy recommendations’, Transportation Research Part A, 77, pp.

167–181.

Fagnant, D. J. and Kockelman, K. M. (2014) ‘The travel and environmental implications of

shared autonomous vehicles , using agent-based model scenarios’, Transportation Research

Part C: Emerging Technologies, 40, pp. 1–13.

Gangopadhyay, B. et al. (2019) ‘Identification of Test Cases for Automated Driving Systems

Using Bayesian Optimization’, 2019 IEEE Intelligent Transportation Systems Conference, ITSC

2019, pp. 1961–1967. doi: 10.1109/ITSC.2019.8917103.

Gotoda, H. (2003) ‘3D shape comparison using multiview images’, NII Journal, pp. 19–25.

Huang, J. and You, S. (2012) Point cloud matching based on 3D self-similarity, IEEE Computer

Society Conference on Computer Vision and Pattern Recognition Workshops. doi:

 48

10.1109/CVPRW.2012.6238913.

ISO (2021) Intelligent transport systems — Low-Speed Automated Driving (LSAD) Systems for

Predefined routes — Performance requirements, system requirements and performance test

procedures - ISO 22737.

Kalra, N. and Paddock, S. M. (2016) ‘Driving to safety: How many miles of driving would it

take to demonstrate autonomous vehicle reliability?’, Transp. Res. Part A Policy Pract, 94, pp.

182–193.

Khastgir, S. et al. (2017) ‘Test Scenario Generation for Driving Simulators Using Constrained

Randomization Technique’, SAE Technical Papers, 2017-March(March). doi: 10.4271/2017-01-

1672.

Knabe, E. (2019) ‘SimS. Simulation Scenarios. Public report’. Available at: www.vinnova.se/ffi.

Menzel, T. et al. (2019) ‘From functional to logical scenarios: Detailing a keyword-based

scenario description for execution in a simulation environment’, IEEE Intelligent Vehicles

Symposium, Proceedings, 2019-June, pp. 2383–2390.

Menzel, T., Bagschik, G. and Maurer, M. (2018) ‘Scenarios for development, test and validation

of automated vehicles’, arXiv, 2018-June(Iv), pp. 1821–1827.

Muliukha, V., Lukashin, A. and Ilyashenko, A. (2019) ‘An Intelligent Method for Comparing

Shapes of Three-Dimensional Objects’, in 2019 25th Conference of Open Innovations

Association (FRUCT), pp. 234–240. doi: 10.23919/FRUCT48121.2019.8981528.

NCAP (2020) ‘Euro NCAP Test Protocol-AEB VRU systems’, November, (June). Available at:

https://cdn.euroncap.com/media/58226/euro-ncap-aeb-vru-test-protocol-v303.pdf.

Neurohr, C. et al. (2021) ‘Criticality Analysis for the Verification and Validation of Automated

Vehicles’, IEEE Access, 9(i). doi: 10.1109/ACCESS.2021.3053159.

Novotni, M. and Klein, R. (2001) ‘A geometric approach to 3D object comparison’, in

Proceedings International Conference on Shape Modeling and Applications, pp. 167–175. doi:

10.1109/SMA.2001.923387.

‘Operational Design Domain (ODD) taxonomy for an automated driving system (ADS) –

Specification’ (2020) The British Standards Institution, BSI PAS 1883.

Protocol Buffers. Available at: https://developers.google.com/protocol-buffers.

Safety Pool Database Access. Available at: www.safetypooldb.ai.

Safety Pool Scenario Database. Available at: https://www.safetypool.ai/.

Tas, O. S. et al. (2016) ‘Functional system architectures towards fully automated driving’, IEEE

Intelligent Vehicles Symposium, Proceedings, 2016-Augus(Iv), pp. 304–309. doi:

10.1109/IVS.2016.7535402.

Tenbrock, A. et al. (2021) ‘The ConScenD Dataset: Concrete Scenarios from the highD Dataset

According to ALKS Regulation UNECE R157 in OpenX’. Available at:

http://arxiv.org/abs/2103.09772.

 49

UK Department for Transport (2020) ‘Road Safety Data - STATS19’.

Ulbrich, S. et al. (2015) ‘Defining and Substantiating the Terms Scene, Situation, and Scenario

for Automated Driving’, IEEE Conference on Intelligent Transportation Systems, Proceedings,

ITSC, 2015-Octob, pp. 982–988.

UNECE (2020) ‘R157’, 1958(March 1958).

Urbach, D., Ben-Shabat, Y. and Lindenbaum, M. (2020) ‘DPDist: Comparing Point Clouds Using

Deep Point Cloud Distance BT - Computer Vision – ECCV 2020’, in Vedaldi, A. et al. (eds).

Cham: Springer International Publishing, pp. 545–560.

Le Vine, S. et al. (2016) ‘Automated cars : Queue discharge at signalized intersections with

“ Assured-Clear-Distance-Ahead ” driving strategies’, Transportation Research Part C:

Emerging Technologies, 62, pp. 35–54.

Zhang, X. et al. (2021) ‘Test Framework for Automatic Test Case Generation and Execution

Aimed at Developing Trustworthy AVs from Both Verifiability and Certifiability Aspects’, IEEE

Conference on Intelligent Transportation Systems, Proceedings, ITSC, 2021-Septe, pp. 312–

319. doi: 10.1109/ITSC48978.2021.9564542.

Zhang, X., Khastgir, S. and Jennings, P. (2020a) ‘Scenario Description Language for

Automated Driving Systems: A Two Level Abstraction Approach’, in Proc. of the 2020 IEEE

International Conference on Systems, Man and Cybernetics (SMC).

Zhang, X., Khastgir, S. and Jennings, P. (2020b) ‘Scenario Description Language for

Automated Driving Systems: A Two Level Abstraction Approach’, IEEE International

Conference on Systems, Man and Cybernetics (SMC).

Zhou, T. et al. (2020) ‘COMPARATIVE EVALUATION OF DERIVED IMAGE AND LIDAR POINT

CLOUDS FROM UAV-BASED MOBILE MAPPING SYSTEMS’, ISPRS - International Archives of the

Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B2-2, pp. 169–175.

doi: 10.5194/isprs-archives-XLIII-B2-2020-169-2020.

To find out more, please contact: info@zenzic.io

zenzic.io

	V&V Report
	V&V FINAL - For Wrapping.pdf

