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About Us 

Thales - Together. Safer. Everywhere 

Thales plays a role whenever critical decisions need to be undertaken. In all the markets we serve – 

aerospace, space, ground transportation, security and defence – our understanding of the Critical 

Decision Chain helps customers to decide and act in a timely fashion and obtain the best outcomes. 

World-class technologies and the combined expertise of 65,000 employees in 56 locally based 

country operations make Thales a key player in assuring the security of citizens, infrastructure and 

nations. 

Thales UK Limited, Research and Technology 

Thales UK's Reading-based research and technology facility is the UK arm of the Thales corporate 

research centre. Activities focus on providing solutions: Security and Communication Systems, 

Galileo and Position-Based Systems and Enhanced Digital Environments. These are based on the key 

technologies of IP Networks and Network Security, Wireless Communications, Sensors and Signal 

Processing, and Navigation and Positioning. The facility offers a wide range of consultancy and 

development services to European Government Agencies and to industry throughout the world. 
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Executive Summary 

The goal of ResiCAV is to explore the technological and economic feasibility of developing, 

implementing and operating a sustainable UK Cybersecurity Engineering capability; to ensure the 

cyber resilience of future mobility.  

This is an ambitious goal considering the size and complexity of 
the issue, but at the same time a very necessary target when we 
consider the possible risk of catastrophic failure in moving from 
Connected and Autonomous Vehicle (CAV) demonstrations to 
mass deployment if new methods are not developed to protect, 

detect, understand and react to emerging threats. 

Thus, the electronic systems of future vehicles, as well as the intelligent transport systems that they 

interact with, will need to exhibit a high degree of resilience to a wide range of threats.  

ResiCAV+ documents this study in 5 Reports: 

• Report 1: Prototype Tool Suite (software/documentation/skills training course?) including 

worked Examples of their use to provide cyber resilience in real-world automotive systems 

but noting OEM/Tier1 specifics may need to be redacted from a final report. 

• Report 2: Proof of Concept Demonstrator of Prototype Tool Suite a report on the tool suite 

covering how and in what form the tool suite might be made available for use by commercial 

and academic researchers, allowing them to start to integrate the CyRes methodology into 

existing practices.   

• Report 3: Legal Report providing a route to a per vehicle legally defensible argument that 

the cyber vulnerability of the braking system was reduced ALARP using this significant 

difference approach and based on the distributed ledger.  

• Report 4: Compliance Report providing a route to a per vehicle providing a route to a per 

vehicle real time compliance argument based on the use of the distributed ledger.  

• Report 5: Exploitation Plan an updated roadmap outlining next steps to improve cyber-

resilience of automotive systems using CyRes tools & methodologies, building on previous 

work by team, ResiCAV, NCSC, etc. 

o Roadmap for continuing development and the funding required. 

o Plans to exploit and disseminate tools and methods on a global basis. 

This report (Deliverable 1) outlines the Prototype Tool Suite covering the software, documentation 

of those tools what skills and training courses and its suitability for use by OEMs and Tier suppliers in 

the automotive industry as well as other members of the ecosystem allowing them to start the 

business / engineering transformation necessary to metamorphose to the CyRes (Cyber Resilience) 

methodology from existing practices.  To achieve this, ResiCAV+ consulted with representative 

members of the automotive eco system to determine whether the prototype toolchain might 

advantageously be incorporated into their engineering / business processes, what impediments 

there might be to achieving this ad what advantages or disadvantages there might be were this to be 

achieved. 
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The goal of CyRes is to define an operational methodology, suitable for standardisation, for which: 

1. The methodology itself is capable of being tested in court or by publicly appointed 
regulators. 

2. Operators understand what evidence should be produced by it and are able to measure the 
quality of that evidence. 

3. The evidence produced is capable of being tested in court or by publicly appointed 
regulators. 
 

Typically this will mean that the real-world system to which the methodology has been applied is 

capable of operating at all times and in all places with a legally acceptable value of negative 

consequence. 

However, and unlike other Cyber Security methods for which the question is often ‘how much must I 

spend to be compliant’, the CyRes methodology is rooted in economic advantage with achieving the 

conditions for compliance being a by-product. One of the fundamental insights of CyRes is that 

Cyber-attacks are ‘emergent properties’. Much of the value of the economy is based on products 

and services created around emergent properties so by understanding and managing these in real 

time CyRes for the first time allows Cyber Resilience to sit firmly within the value creation rather 

than compliance chain. 

The ResiCav+ programme, and the research by leading experts that underpins it, builds on prior work 

that demonstrated not only is the CyRes methodology is economically and technologically feasible 

but that operating in this way would allow the direction of capital towards growth rather than 

compliance.  Under this programme  

CyRes achieves this dynamic business advantage whilst at the same time developing evidence of 

Cyber Resilience that can be confidently brought to court if required. It is built around three 

principles and six certification arguments designed to provide a mathematically well-founded index 

of resilience, including cyber resilience, in operational space. 

In considering the technological and economic feasibility of CyRes this study has concluded that all 

of the resilience and economic benefits are achievable by the UK in 3 years subject to an 

investment of £150m. This conclusion is made on the basis that: 

1. All of the elements necessary to operate CyRes exist today at a Technological Readiness 
Level (TRL) of 5-7.  

2. Subject to an appropriate investment in tools of less than £20m over three years then the 
method could achieve TRL 9 and would be globally economically attractive. 

3. Within three years the method could deliver a level of resilience with respect to emergent 
properties and cyber-attacks that would exceed current state of the art. 

Whilst it was not the main purpose of this study the research conducted determined that more than 
25% of the cost of vehicles was being spent in chips, software, V&V and compliance / type approval 
aimed at removing inherent diversity and turning them back into entities with inherent and 
increasing potential for global catastrophic outcomes; much of this could be saved by using CyRes.  

Furthermore, collaborators at all levels of the supply chain reported that up to 5% of the cost of the 
digital vehicle was being spent on Cyber Security with little or no measurable outcomes with 
respect to Cyber Resilience. 

The techniques demonstrated by ResiCav+, which support the CyRes methodology and its 
operationalisation, provide an academically well-founded baseline for understanding the cost of 
operation together with an academically well-founded baseline for understanding the 
effectiveness. The acceptance of CyRes and this baseline together with the need to understand and 
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improve it will provide a springboard for innovation for companies at all layers together with a 
direction for and measure of academic research in the coming decades. 

The purpose of the demonstration testbed was to: 

- Support development of the CyRes capability 

- Allow systems, services and applications e.g. CAVs to be integrated together 

- Support development and demonstration of CyRes scalability 

- Demonstrate the production of court admissible evidence to support the CyRes arguments. 

To enable the testbed to meet this purpose, the following requirements had to be met: 

- Modular integration capability, such that inclusion of a new component does not impact 

other components 

- Include a distributed ledger as a system of systems data store and allows systems to interact 

- Provide an evidential chain of information  

- Provide interfaces to allow systems, services, applications and components to integrate into 

the system of systems 

- Enable simulators or real systems to be integrated for development, demonstration and 

experimental purposes 

- Possess visual interfaces to demonstrate the CyRes concepts and methods. 
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1. Introduction 
 

The purpose of the demonstration testbed was to: 

- Support development of the CyRes capability 

- Allow systems, services and applications e.g. CAVs to be integrated together 

- Support development and demonstration of CyRes scalability 

- Demonstrate the production of court admissible evidence to support the CyRes arguments. 

To enable the testbed to meet this purpose, the following requirements had to be met: 

- Modular integration capability, such that inclusion of a new component does not impact 

other components 

- Include a distributed ledger as a system of systems data store and allows systems to interact 

- Provide an evidential chain of information  

- Provide interfaces to allow systems, services, applications and components to integrate into 

the system of systems 

- Enable simulators or real systems to be integrated for development, demonstration and 

experimental purposes 

- Possess visual interfaces to demonstrate the CyRes concepts and methods. 

Using this tool chain, ResiCav+, work previously conducted on the CyRes methodology and 

predecessor projects as well as the self-funded work of the project partners and their academic and 

industrial partners the project partners sought to answer the question ‘who might take advantage of 

such a framework and tool chain’.   

This report details the result of the ResiCAV+ consultation with representative members of the 

automotive eco system to determine whether the ResiCAV+ toolchain might advantageously be 

incorporated into their engineering / business processes, what impediments there might be to 

achieving this and what advantages or disadvantages there might be were this to be achieved. 

Specifically, ResiCav+’s respondents were asked to consider what engineering, management or legal 

impediments might prevent adoption of such a tool chain, what training might be necessary and for 

whom, and finally whether this would impact positively or negatively on the current and emerging 

skills deficit in the industry.  Thoughts on these are recorded in this the D1 report. 

Available separately the ResiCav+ D2 report considers ‘who might take advantage of such a tool 

framework and tool chain’ by consulting with potential industrial and academic sources of tools.   

In the case of potential academic sources of tools, the intention of this consultation was to 

determine whether: 

a. the framework made it more feasible to bring ‘tools’ and concepts developed as part of 

academic research to market.   

b. integration with such a framework might positively or negatively impact the long term 

future for such research. 

Examples of academic partners consulted on this project included University of Warwick (a project 

partner) and University of Bristol and Imperial College. 
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In the case of industrial sources of tools, the intention of this consultation was to determine 

whether: 

a. the framework was consistent with making effective use of funding models. 

b. integration with such a framework might positively or negatively impact the long term exit 

strategies including prospects for sale of such companies.  

Examples of industrials consulted on this project included Thales UK (a project partner) and Jitsuin. 
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2. Document Structure 
 

Section 3: The Problem – based on previous research articulates the problem space for modern and 
future vehicles including CAVs including the 3 principles and 6 arguments that  the CyRes 
methodology identified as fundamental to a coherent and defensible resilient system. 

Existing automotive practice however is focussed almost entirely on the design rather than 
operation phase with a skill base rooted firmly in electromechanical systems and the experience of 
the past 50 years. 
 
Section 4 The ResiCav+ Technical Approach – The ResiCAV+ technical approach sets out a feedback 
loop based around the collection of evidence relating to events and the decisions made with respect 
to those events that provides for the reinsertion of tested updates into vehicles at scale and within 
minutes.  It operates on the basis that changes to the vehicle baseline must often be driven by 
changes necessitated by emergent properties in its environment rather than from controlled 
software updates.  As such and given that the Technology Readiness Level (TRL) of an emergent 
property will often be 0 this toolset was created on the basis that Automotive systems will at all 
times be in a design phase crucially even when deployed.  
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Section 5 Some Conclusions and Further Work – This section documents some of the conclusions 
from the ResiCAV+ study particularly with respect to the tools and their suitability for use. 
 
Appendices – The Appendices are as follows: 

➢ Appendix A sets out some initial work that has been done to create standardised schema 
and ‘smart contracts’ for use when communicating between 3rd party tools and the 
blockchain framework.   

➢ Appendices B to F cover the various tools that were integrated together into the ResiCAV+ 
Framework to show the feasibility of a legally sustainable real time capability to cover the 
type of complex system that the automotive industry is now evolving to.   

➢ Appendix G covers screenshots from RKVST which was the blockchain tool used in this 
demonstration 

➢ Appendix H covers elements from the Braking demonstration.  
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3. The Problem  
Over the period since 2015 we have characterised every significant emerging system as having all, or 

at least most, of the characteristics shown below under the diagram ‘what is the problem’  

 

These systems can be stimulated to failure by cyber-attacks.  Whilst demonstrating the problem at 
the level of the global interconnected system we have also demonstrated it in secure chipsets and in 
systems including automotive braking, flight and energy control systems; all areas where the highest 
level of safety might be expected to apply and for which we are now demonstrating that the very 
engineering process being used for assurance are in fact the major contributor to the most 
catastrophic failures. 

This problem is increasingly acknowledged and cited by C level business leaders and those of their 
supply chains, particularly in areas including Automotive and Medical where safety of life is a 
consideration.  Evidence of this can be seen in the recent ministerial response to a Techworks letter 
with respect to the Automotive Transformation Fund and the Connected and Automated Mobility 
(CAM) Technology Acceleration Fund where the only subject explicitly now called out is Cyber 
Security. 

As shown in the Figure 1 below complexity is fast becoming the principal cause of product recall in 
the automotive industry and given that it is growing at greater than 5% pa and vehicles are 
becoming increasingly complex with techniques including Artificial Intelligence (AI) / Machine 
Learning, approximate computing, smart sensors and edge / hybrid vehicles this is a trend that is 
increasingly set to dominate and will soon become unmanageable.   
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Figure 1: Complexity Related Recalls 

The cyber threat is often seen as exploiting well known IT vulnerabilities which in itself would likely 
result in ¼ million significant vulnerabilities for the automotive industry and connected cyber 
physical systems in general we are increasingly seeing the emergence of attacks exploiting 
‘emergence’ as a method to attack the space outside the model analysed at design time.  Cyber 
attacks in this context are just one type of highly targeted and inconvenient emergence showing no 
significant requirement for skill, opportunity or equipment 

 

Figure 2: Emergence of Vulnerabilities 

Worse, as compared to electromechanical automotive systems which have a tendency to fail one at 
a time and are therefore insurable ‘emergence’ in modern automotive systems has the potential to 
fail globally as has already been seen in a number of IT examples including ‘notpetya’; indeed cyber 
attackers including Miller and Valasek have observed1 that only the most skilled attackers are able to 
target single vehicles which is the complete inverse of the experience from the electro mechanical 
space.  

 
1 Black Hat 2016 
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In response to this problem and further observations with respect to complexity science, the nature 

of evidence and significant work has been done to define a method based on 3 principles and 6 
arguments to move the development of assurance to the operational rather than design space. 

In electro-mechanical systems, each system and platform is different and consequently each would 
be expected to be susceptible to failure in a different way and at a different time; the potential 
‘harm’ arising from failure occurs with statistical probability, one device at a time.  It is this principle 
that forms the basis of standard safety calculations.  In digital systems it is possible that an identified 
fault could manifest in all digitally identical systems at the same time, thereby giving rise to global 
catastrophic failure.  That is, at the level of the overall system of devices rather than at the level of 
the individual device.   

Sharman et al. (2004), proposed functionality defence by heterogeneity as a paradigm for securing 
systems.  This technique was inspired by the biological phenomenon of the human race surviving 
deadly viruses because of the diversity arising from heterogeneity.  We use similar inspiration to 
create the concept of engineered differences.  The approach is concerned with the deliberate 
introduction of significant differences between systems and platforms. These differences may be 
imperceptible to the user or operator but may prevent all systems being affected in the same way by 
cyber-attacks.  At its most extreme one may suppose that a cyber physical system in which every 
entity was different would fail, and therefore be subject to calculation of harm, in the same way as 
an electro-mechanical system.   

Producing a system that exhibits significant differences in this way has been deemed economically 
infeasible on the basis that: 

1. the need for V&V and product certification could not be borne on a per unit basis; 
2. the economics of eg. chip design and manufacturing, together with the necessary 

ecosystem fabs, toolchains etc. favour a volume industry in which if you are not #1 or #2 
then you are not likely to survive. 

 
In addition: 
 

3. it has been found to be technologically difficult to determine that one system or component 
is in fact significantly different from another. 

 
For the engineering of significant difference to be a viable technique it must be possible to address 
each of the three points above.   
 
In ‘Technological and Economic Feasibility of the CyRes Methodology’ [Thales 2020] drawing on 
areas including Approximate Computing, CMOS Variability Modelling and Prediction, Nanoelectronics 
Devices and Modelling, Significant Difference and Appropriate Level of Resilience and Risk 
Management to demonstrate that Significant Difference is economically and technologically 
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beneficial and is feasible.  Further it was shown that the investment currently made to turn 
inherently analogue systems into digital is creating significant vectors for catastrophic failure, 
diminishing the anticipated associated benefits that have driven the industry of the past decades. 
 
Resting on the work of many of the ACE-CSRs and all of the NCSC supported RIs, ‘Technological and 

Economic Feasibility of the CyRes Methodology’ did significant amounts of the scientific groundwork 

and suggested a set of tools which over a 3-5 year period could allow the economically feasible 

operationalisation of future methods to combat cyber and complexity attacks against our most 

important products and systems. 

ResiCAV+ has set out to demonstrate a basis of an extensible framework into which those tools 

might be integrated and that these tools could form the basis of a legally defensible and adoptable 

engineering methodology for the Automotive industry throughout its supply ecosystem. 
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4. The ResiCav+ Technical Approach  
 

The ResiCav+ technical approach set out to demonstrate that ‘events’ occurring in the vehicle due to 

changes in the environment in which it was operating could be detected, understood, a solution 

determined and reloaded into the vehicle within minutes if necessary and that this could be done in 

such a way that the requirements of both regulators and the law could be met.  In doing so ResiCAV+ 

has demonstrated that CyRes can be applied to provide both system resilience and evidence for 

courts or regulators.  
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Notwithstanding the acceptability of a system based on the tool chain to the courts and regulators 

one, perhaps the most, critical characteristic will be the ability to integrate it into the existing 

engineering practice as that evolves to handle more complex vehicle architectures based on lower 

levels of inherent determinism.  Typical impediments that were foreseen included: 

• Lack of adequate skills in the existing workforce. 

• Management resistance 

• Perceived contradictions with the compliance agenda 

In order to assess the probability, the team consulted with 3 automotive OEMs selected for the 

following characteristics: 

1. OEM1 – A multinational with ‘siloed’ development teams situated in a number of countries 

based around functional subsystems and responsibility devolved to each team. 

2. OEM2 – A multinational that has begun to transform their business in response to the skills 

shortage by stratifying around skills such as software and centralising these resources 

3. OEM3 – A small OEM but part of a much larger organisation where the parent organisation 

has invested in components which the OEM is expected to use in order to realise value from 

the parent company investment. 

In addition, 2 multinational T1 suppliers with a footprint in the UK have been consulted. 
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The ResiCAV+ solution uses multiple simulations of various aspects of the vehicle, against candidate 

uses cases, to predict how the system will behave. These use-cases and the model are bound within 

a set of assumptions about the range of inputs & behaviours in the deployed system – these are the 

constraints of the simulation. 

Feedback from the deployed system in the vehicle records anomalous events, inputs & behaviours. 

Those inputs and behaviours outside of the constraints of the simulation need to be assessed – 

possibly by widening the inputs to the simulation to cover these newfound scenarios. With these 

updated simulations the system can assess if these previously unexpected inputs are suitably 

handled, and we can probably extend the input data and therefore the constraints to reflect this 

newfound information. Or the simulation identifies the system does not behave as desired and some 

other course of action is required.  

 

Design and Operation 
The flow outlined above focuses on the operational flows; responding to events in the live system, 

assessing them, and making updates as necessary. This process is preceded by a design phase that 

results in a sufficient simulation model and body of evidence to commence deployment into a real 

system. 

For a machine learning based solution the training and initial requirement verification phases occur 

‘off-line’ before deployment of the system.  

 

The suitability of the solution needs to be measured and only accepted for deployment once the 

necessary levels have been achieved. 
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❑ Dynamic Verification - Technical Requirement Spec.:   
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The TS transaction is used to record simulation results. This could be used to record the results from 

the ‘Off-line Requirements Verification Phase’ above.  

Where do limits for acceptability come from, are they represented in a TSR transaction, in the 

assumptions / constraints? Is this only intended to cover an update from an on-line system, or does 

the designer create the initial TSRs to create the suitable system.  

System boundaries 
For the purposes of this analysis, a system boundary needs to be defined to separate elements which 

are internal to a system and elements which are external to a system. A CAV system will be used as an 

example (Figure 3). In Figure 3, the CAV can be seen to be containing AI, HMI, Drive Control, Comms 

and Sensors, i.e. the components and sub-systems present on the CAV and required for the CAV to 

operate successfully. All of these except Comms are considered to be internal to the system. Comms 

possesses internal and external elements, for sending data inside and outside the CAV respectively.  

Sensors are considered to be internal to the CAV, as they are part of the CAV, and are not external to 

it. All the other systems shown in Figure 3 are considered to be external to the CAV. Changes to 

external systems should have only a minimal effect on the purpose of the CAV internal elements.  

 

 

Figure 3: Connected Autonomous Vehicle internal and external systems. 

 

System balance 
Any system possesses resources, data and processing need which need to be designed to be in the 

right balance in order for that system to work effectively and efficiently (Figure 4).  
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Figure 4: Scalability pyramid 

Data includes any data and information input into the system, present within the system and output 

by the system. Data aspects include 7 of the V’s of Big Data – Volume, Variety, Velocity, Veracity, 

Value, Variability and Volstility[1], plus, the issue of compatibility. 

• Volume – the quantity of the stored and generated data, and the size of an item of data. 

• Variety – the types and natures of the different data items. 

• Velocity – the speed at which data is generated, processed and made available to the system. 

• Veracity – the truthfulness or reliability of the data, including the data quality. 

• Value – the worth of the data, why is it useful, what can it do for the system? 

• Variability – the changing nature of data, including formats, structure or source. 

• Volatility – how long before an item of data is irrelevant, historic or no longer useful? 

• Communication / bandwidth – what amount of data needs to be communicated? 

Resources include data processors, data storage and data communication. For each of these, the 

quantity available, the capabilities of each (processing volume and processing speed), and the location 

of each need to be considered. 

Processing needs focus on how to transform data inputs to produce data outputs. Processing aspects 

include velocity, complexity, interdependency, accuracy, variability and time dependency.  

• Velocity – how quickly are the outputs required? 

• Complexity – how complex is the processing required to meet the processing needs? 

• Interdependency – what processes depend on the output of other processes? 

• Accuracy – how accurate do the outputs need to be? 

• Variety – what different forms of processing are required to meet the processing needs 

• Time dependency – how do the processing needs vary with time, e.g. peak time versus off-

peak time? 

https://ukc-word-edit.officeapps.live.com/we/wordeditorframe.aspx?ui=en%2DGB&rs=en%2DUS&wopisrc=https%3A%2F%2Fthalescyrescom-my.sharepoint.com%2Fpersonal%2Fpeter_davies_cyresemerge_com%2F_vti_bin%2Fwopi.ashx%2Ffiles%2F22cba1bcd3284cb0bd1ca832061caaca&wdenableroaming=1&mscc=0&wdodb=1&hid=25F3C19F-D0FB-2000-AE05-F078B3D28562&wdorigin=Sharing&jsapi=1&jsapiver=v1&newsession=1&corrid=99f002a2-d5e9-4b3b-b34e-c1434d23af3d&usid=99f002a2-d5e9-4b3b-b34e-c1434d23af3d&sftc=1&mtf=1&sfp=1&instantedit=1&wopicomplete=1&wdredirectionreason=Unified_SingleFlush&rct=Medium&ctp=LeastProtected#_ftn1
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Effects of increasing the size of a System of Systems. 
When a system is integrated into a system of systems, or as the number of systems in a CAV SoS 

increases, the purpose of the systems internal to each CAV are only minimally affected, but it is now 

exposed to external inputs and requirements. The internal processes are still required to operate the 

CAV in a safe and secure manner. The major effects on the SoS are increases in the amount of data 

now present and the number of interactions between the SoS components. Interactions can be purely 

informative i.e. exchange of data, or may require systems to decide upon and perform some action.  

The system’s data, processing and resource capabilities and activities need to change in relation to 

each other to maintain a balanced system.  Increased volume and variety of data leads to increased 

processing need and an increased resource requirement.  

Considering the three aspects of the scalability pyramid, the following effects and issues are noted: 

• Data 

o The volume of data present in the SoS increases as each additional system adds its 

own data to that available. 

o What data and when does a CAV need it for successful operations? Will this be a data 

push or data pull mechanism? 

o Only some of a system’s data has value to other systems, so not all of it needs to be 

shared. 

o The correct types of data need to be stored for future evidence production. 

o Conclusion - Data processing, storage and communication requirements will increase 

as a result of the need to manage the increased data volume (amount) and data size 

(bandwidth requirements).  

• Processing 

o Additional tasks introduced by increasing SoS complexity: 

▪ Coordination and management of the SoS systems – controlling how the 

systems interact to achieve SoS operational success. 

▪ Management of data communication between systems - determining what, 

when and who to share a data item with, and checking the received message 

accuracy / data loss. Communications management processing will include 

monitoring and predicting the available communications bandwidth and 

traffic, then balancing this against the importance of the data, in order to find 

the optimal time to send data. 

▪ Data assessment – determining what data to send or store. For example, only 

transmitting the salient points rather than all the raw data during busy times 

or when communications bandwidth is limited 

▪ Data summarisation – reducing the size of data items to send or store, from 

large amounts of low meaning data into smaller amounts of higher meaning 

information. Note this will take into account the requirements of digital 

forensics. 

o It is expected that there will be limited processing ability present on some systems, 

due to the physical size of the systems and of the processors. For example, a CAV will 

have limited processing capability. Each CAV’s processors will prioritise essential CAV 

operational processing, but this will require processing management processes. 

o Conclusion - Extra processing will be required, for applying existing processes to larger 

volumes of data and for managing the SoS. 
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• Resources 

o Storage 

▪ Data storage has cost associated with it. Options include: 

• Everything – observations and all processing outputs. 

• Observations only – this assumes all processing outputs can be 

generated efficiently on request, and may require repeated 

processing to produce the same processing output when required. 

• Observations and frequently used outputs – infrequently used 

outputs are generated on request. 

• Observations and summaries. 

• Data required for evidence production and forensic analysis? 

▪ For a SoS, the location of data storage is also a factor. Systems such as CAVs 

have limited storage capability, thus only data essential to a CAV’s operation 

and recently acquired data will be stored on-board. Once data has been 

successfully transmitted elsewhere, non-essential data can be over-written. 

The bulk of the data will be stored off-line and efficient data access required. 

▪ Conclusion - determining what to store and where to store data affects the 

economic feasibility.  

o Communications 

▪ Some communication connections will be transient, e.g. during a CAV’s 

journey. The length of time a CAV is in contact with other systems that it 

passes will vary, based on the travel velocity, the types of communication 

media involved and the range capability of the communication media.  

▪ Networks of connections can be formed to extend the range over which data 

can be communicated. However, during a journey, it may be difficult to 

determine if a message has been delivered to its intended recipient due to 

the dynamic nature of such a network. Issues of data security also need to be 

considered as the network may be made up of many different types of 

system. Data encryption will increase the processing load. 

▪ Communications bandwidth and load must be balanced against message 

volume (amount and size).  Large messages can be sent during times of low 

traffic or when bandwidth is higher. Alternately, only the salient points can 

be transmitted instead of large amounts of raw data. 

▪ Conclusion – Appropriate communications need to be available within the 

SoS, alongside the additional processing required to manage the increased 

communications.  

o Processors 

▪ Location - Some activities can be performed elsewhere, i.e. off-CAV at some 

central repository.  

▪ Capability – Additional processing is needed as a SoS grows. The nature of 

what processors are required will be influenced by design decisions regarding 

how best to perform the processing (see below).  

▪ Conclusion – resource location and capability are needed to support the 

increased data and its associated SoS requirements.  
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• Other issues: 

o Good compatibility between systems within a SoS will reduce costs. This will require 

the development and agreement of interfaces and standards. Without these, extra 

cost will be incurred to develop the bespoke software required for system interaction. 

o Timing of activity – This includes data processing and data communication. It will 

prioritise essential CAV operational processing. Other processing may have to wait. 

Some activities can be done when things are quiet or when CAVs are in certain states, 

e.g. recharging.  

o Security requirements will increase as the amount and variety of data and systems 

within a SoS increase.  

o Design decisions - Technology exists to facilitate scalability for large and growing 

systems, e.g. Software as a Service (SaaS) which allows users to connect to and use 

cloud-based apps over the internet, Cloud storage and processing, micro-services, 

Amazon Web Services (AWS) and SW languages e.g. Go. 

  

Scalability solutions 
From the discussion of the effects of scalability above, the key part for making scalability work is 

getting efficient and appropriate processing, storage and communication of data. The main things for 

this are increasing the resources and having appropriate software for managing them.  

Initially as the number of systems goes up, the amount of data goes up. This forces up the resource 

and processing needs, which in turn increase the amount of software (processing) required. Software 

requires resources, which create processing need and the cycle continues until a balance point is 

reached (Figure 5). At this point, the amount of resource and software balance each other’s needs in 

order to support the data need. 

 

 

Figure 5: Moving from increasing requirements cycle to a balanced system. 

Achieving economic feasibility 
Good design is the key to achieving economic feasibility. By considering the requirements of a growing 

SoS at design time, it is possible to develop a system which uses the best and most appropriate 
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technology in terms of hardware and software. Additionally, it is easier and cheaper to scale a system 

which has been designed for scalability, than to retrofit scalability to an existing system. As mentioned 

earlier, the use of common, agreed interfaces and standards between components or systems within 

the SoS, also contributes to keeping the costs down. While both of these have an initial financial 

outlay, they reduce the later and ongoing costs. 

Blockchain transactions 
We identify four types of transactions, namely Configuration (TC), Event (TE), Simulation Request 

(TSR) and Simulation (TS). Each transaction type contains two fields, subsystem and use_case, 

making them enough generic to be applicable to different aspects of the vehicle. 

Furthermore, each transaction type is defined as follows: 

- Configuration (TC) 

Inserted by: Monitor/Adjust block 

Used by: All blocks 

The configuration transaction defines a specific and immutable set of constraints, thresholds 

and parameters. Transactions fields depend on the {subsystem, use_case} pair; in our 

example, the ABS stability analysis requires a set of thresholds and constraints. 

The field “previous” maintains a link to the previous version of the configuration, before 

adaptation. 

 

 

 

- Event (TE) 

Inserted by: Vehicle / Environment 

Used by: Monitor/Adjust block 

The event transaction contains all the information related to an anomaly reported by the 

vehicle. It is connected to: 

o Vehicle data, using a hash-based file anchor (for example IPFS storage) 

o Configuration, using the hash of the corresponding TC 
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- Simulation Request (TSR) 

Inserted by: Monitor/Adjust block 

Updated by: Simulation block 

This transaction is written by the Monitor/Adjust block to request a new simulation, arose 

from a specified event. 

 

- Simulation (TS) 

Inserted by: Simulation block 

Used by: All blocks 

This transaction contains the outcome of a simulation. 
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Using a smart contract, the vehicle stores a new TE transaction 

 

 

 

 

Using a smart contract, the Monitor/Adjust block retrieves the newly added TE transactions and, 

starting from the current configuration linked in the event, it prepares one or multiple new plausible 

configurations for simulation. Such simulation proposals are stored as TSR transactions 
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Using a smart contract, each simulation block retrieves the newly added TSR transactions and 

verifies if they can be satisfied (same {subsystem, use_case}). If so, the simulation is run and the 

outcomes will be stored in a new TS transaction. 

 

 

 

 

Simulation requests (TSR) and results (TS) contain model, use_case, configuration, test data and all 

the other info needed to provide a full picture for future assessment and validation. 

The data-link in TE refers to vehicle data, whilst data-link in TS refers to test-data. Vehicle and test 

data are stored off-chain. 

Using a smart contract, the Monitor/Adjust block collects all the simulations (TS) and, considering 

the outcome, it might decide to promote a new configuration, creating a TC transaction. The latter is 

stored into the DL and possibly forwarded to the vehicles, thus used in identifying new events. 
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Breaking the Brakes 

Breaking the Brakes as an Exemplar 
Shmyglya2 investigated the attack surface of modern cars with the aim to find areas of weakness as 
the industry is moving towards connected autonomous vehicles and mobility services. In comparison 
to traditional cars that were designed as self-contained systems, the modern car offers a variety of 
I/O ports and external connection points to enable features such as vehicle to vehicle 
communication, satellite navigation or advanced driver assistance, and to accommodate on-board 
entertainment as well as telematics. This creates opportunities for different types of attack, 
exploiting vulnerabilities across the attack surface from attacks that require direct access to the in-
vehicle communication network, via attacks that require close co-location without direct access (e.g. 
using Bluetooth) to fully external attacks that can be launched without direct access or co-location at 
the time of attack, but may require direct access initially for setup. 
 
The CAN bus has been identified as a point of particular vulnerability. It provides the communication 
network and protocol widely used in modern cars, where a variety of dedicated Electronic Control 
Units (ECUs) from different domains can exchange information without a central host. When it was 
first designed, in the late 1980s, the CAN bus was intended to be used for closed systems. Thus, 
cybersecurity was not a design objective at the time. However, since then connectivity has increased 
significantly. The individual CAN-bus based networks now connect to a central gateway, which can 
be accessed by the On-Board Diagnostics (OBD) port as well as the telematics and infotainment 
domain. This invalidates the original design assumptions and results in an inherently insecure 
communication infrastructure upon which safety-critical functionality is built. For example, steering 
and braking ECUs are connected to a designated high-speed CAN bus for safety-critical components 
that operate under real-time constraints.  
 
Communication on the CAN bus relies on multi-master message broadcasting, i.e. any node can send 
messages and these can be received by all nodes connected to the network. The frame structure 
does not require source nor destination fields. Furthermore, there is no formal authentication on the 
CAN bus, which naively assumes that all nodes communicating on the network are legitimate and 
trustworthy. Clearly, this need not be the case. In fact, this can be exploited by an attacker who 
could inject malicious frames into the network in various ways. To exploit the arbitration, for 
instance, when a continuously transmitted stream of malicious frames is given highest priority then 
legitimate frames from safety-critical nodes get blocked. This is termed a Denial-of-Service (DoS) 
attack. Alternatively, brute-force flooding of the network can consume bandwidth and 
computational resources, leading to timing delays. The result is a violation of the real-time 
constraints required for the system to meet safety-critical requirements, thereby potentially 
endangering the users. In addition, carefully crafted malicious frames could confuse the control 
systems, e.g. selectively or randomly triggering the ABS without user input could lead to very 
dangerous situations. 
 
How easy it is to launch such a DoS attack has been explored in Shmyglya19 using a prototype test 
board as shown in Figure 6. The board includes an Ethernet network switch to which an input 
controller ECU and a motor controller ECU have been connected using Ethernet connections. The 
motor controller ECU is also connected to a motor. In practice, the input controller receives physical 
input from the user, e.g. braking. This is then processed, and the motor controller stops the motor as 
required. Communication on the test board has been set up to mimic the CAN-bus infrastructure 
and communication protocol as much as possible.  
 

 
2 Shmyglya, A. (2020). Breaking the Brakes: Spoofing and Denial of Service Attacks for Safety Critical Vehicle 
Components. 
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Figure 6: LAN with input controller (top left), motor controller (top right), 
network switch (central) and motor (bottom right). 

 
Experimental evaluation revealed that a DoS attack could successfully be launched based on a UDP 
packet flood for a broadcast destination IP. In some cases, the injection of as few as 50 malicious 
packets in quick succession would break the application layer of the input controller, later the motor 
controller would also stop sending requests. A full reset was required before normal operation could 
be resumed. This illustrates the systematic insecurities present in networks of this type and calls for 
significant improvements to ensure the safety and security of vehicles. 
 
 

The ABS Braking System in ResiCAV+ 

 

The top half is a representation of the real system, the variation in the performance of the 

communication network is an example of significant difference. The bottom half is the simulation 

resulting in the decisions of ‘suitability’ of the system. 

The representation of the braking system is an instance of the system in the real system; the 

suitability analysis is an instance of a simulation. Below the elements are overlaid on the solution 

overview: 
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The storage and communication method to allow the multitude of systems and their simulators to 

communicate is the Distributed Ledger. The detailed implementation of a simulation, and the 

detailed test data used to drive a simulation and achieve a particular result needs to be identifiable 

and retrievable – generally configuration management encompasses these tasks. The actual 

implementation and actual test data does not necessarily have to be stored into the DL. 

The real system should report events to the DL whenever inputs or outputs are outside of those 

assumed or achieved by the simulation. For example, if the delay in the communications network 

(green box) is outside of the range assumed in the simulation this needs to be recorded as an event. 

The Monitor/Adjust processing has to take this event and determine how to update the simulation 

to reflect this. This updated assumption / constraint is an input to the simulator(s) and needs to be 

recorded with an updated result. Given updated results (either the simulations say the system still 

works OK, or it says it does not), decisions need to be made; e.g., requesting modifications to the 

system. 

These events and integrations are essentially four interfaces: 

Simulation input, assumptions and constraints 

Simulation output and conclusions 

Configuration of the real system 

Anomalous event report from the real system 

These four interfaces can be represented as four transaction types in the DL. 

The goal would be to have several different instances of the system with different software 

implementations / configurations (this contains the significant difference if they behave / operate 

sufficiently differently) – i.e., multiple of the mustard/yellow boxes in the top right of the diagram. 

The multiple configurations would all be simulated – i.e., multiple of the blue boxes in the bottom 

left of the diagram. The configurations that ‘pass’ the simulation could then be rolled out as 

replacements of the configurations that ‘fail’ the simulation. 
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This suggests the core item of interest in the Distributed Ledger is the real system (the braking 

system), of which there are multiple versions / configurations made up of different software 

configurations. 

Each of these versions / configurations has one or more related simulations that reflect their 

individual behaviour. For a single version / configuration there may be multiple simulations because 

there could be multiple ways to simulate the system that are all useful but independent. The validity 

of a simulation could also change over time – it may become known that a simulation is not giving 

the accuracy previously thought and so it might be replaced with an updated simulation. 

For any simulation there are the set of constraints / assumptions (e.g., the range of network delays). 

Given these constraints / assumptions, a simulation implementation and the simulations test data it 

records its result (e.g., stable / unstable)  

The real system records events in the DL when there is a violation of the constraints / assumptions 

used to simulate the particular version / configuration deployed to that instance of the system (i.e., 

the software build on a braking system). The monitor solution should trigger the re-assessment in 

the simulated environments. 

The re-running of the simulations with the updated constraints / assumptions provides a set of data 

for decisions to be made, with these results in the DL they are available for post assessment and 

validation or review. The decisions made as a result of assessing these results (either by human or 

machine) also needs to recorded in the DL sufficiently to identify the results being relied upon and 

decision reasoning – e.g., versions / configurations 1, 2, 3, 5, 6, 7, 8 simulate as OK with the new 

constraints, version / configuration 4 does not – therefore change all instances using 

version/configuration 4 to one of the other version/configurations. 

Training 
For engineering and technical there have been 2 major considerations.  Major studies have begun to 

try to put numbers against the deficit in skilled cyber security personnel in, or available to, the 

automotive.  Aggregating the numbers employed and shortfalls identified would suggest that the 

numbers required would be in the order of ½ million worldwide and that the current numbers do not 

exceed 50k.  Cyber professionals exist in a worldwide market and are currently one of the most sought 

after graduates with an average cost of employment of £150,000 pa. and a significant issue with 

retention.  This indicated that there is a shortfall of 450,000 skilled individuals worldwide which if 

resolved would attract a £75,000,000,000 cost.  Furthermore, the automotive industry is in 

competition with others that are better resourced including fintech and military.  It is therefore  highly 

improbable that the skill deficit can be addressed if the cyber problem / obligation remains one of 155 

regulatory compliance. 

Our OEM advisors commented that the ½ m cyber professionals exceeds the number of software 

professionals currently employed in the industry worldwide and it was speculated that one reason for 

this may be that the industry has not yet factored in the need for though life software updates and 

has also not determined a revenue stream to support this.  Some of the key observations from our 

OEM and Tier contributors was that: 

1. Tool based support appeared to be affective and addressed an area that was not otherwise 

supported. 

2. The use of other subject area experts such as those with expertise in Control Systems 

Engineering was seen as very important in addressing the shortfall. 
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3. The tool was seen as usable by individuals having expertise in the automotive sector but not 

cyber. 

4. Further guidance was requested on how much automation might be achieved. 

5. Evidence in the blockchain represents a potential liability that must be understood by 

engineers and C level management alike and particularly with respect to the need to be able 

to act. 

6. It was observed that in many cases the Type approval would be expected to prevent 

automatic feedback. 

In order to allow C level management to understand the requirement and therefore engage a 2 hour 

training course / workshop was created based on the ‘advanced cyber security’ module given to 

Automotive Information Sharing and Analysis Center (Auto-ISAC) members by members of the team 

at the request of the National Highway Traffic Safety Administration (NHTSA) in the US.  This course 

sets out to explain based on putative 2031 press articles that from a cyber point of view all of the 

issues that arise in ALKS are already present in commercially deployed braking systems. 

In parallel with the engineering and science aspects of cyber resilience, members of the ResiCAV+ 

consortium have invested in collateral in helping legal board member to understand how their 

obligations and responsibilities as defined in eg. ‘Guidance on Risk Management, Internal Control and 

Related Financial and Business Reporting 2014’ should be managed.  Indications that have been 

received from our OEM partners is that this is an innovative and highly appropriate output that will 

be critical in gaining and retaining the support for the necessary business transformation. 

The format of the training course is: 

1. As a board member these are your obligations and responsibilities [Summary of ‘Guidance 
on Risk Management, Internal Control and Related Financial and Business Reporting 2014’] 

2. Examination of realistic cases 
from the year 2031 (see example 
right) 

3. Workshop (for each case – or 
subset as may be applicable to 
demonstration participants) 

a. The case and learning 
points 

b. Why your existing cyber 
practices may not be 
helping 

c. What could have been 
done and how it would 
have helped 

d. What kind of business transformation would have been necessary 
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5. Some Conclusions and Further Work 

This report gives a brief summary of the design concept of a stability analysis tool which can be used 
for resilient control development for CAVs. The developed tool is capable of: 

• Working in real-time with low computational cost as it only consists of a set of checking 

conditions 

• Working as a standalone tool that can be attached to the vehicle to monitor the vehicle 

stability  

• Working within a fleet of CAVs with the use of blockchain technology to ensure the 

information transparency and reliability of the decision made by the tool 

We then analysed the requirements and proposed a viable integration between the blockchain 
platform and Cyres system. In doing so, we identified four transaction types and defined their 
structure.  

We also investigated the specific use-case of an ABS system, providing a set of sequence diagrams 
corresponding to the various phases. 

We have presented a number of tools, techniques, methods and examples developed and 

investigated by the consortium and our wider academic partners including the Trustworthy Systems 

Lab in Bristol to illustrate specific aspects of the CyRes methodology.    

In consultation with both academic and industrial sources of tools the ‘Framework’ demonstrated by 

ResiCav+ needs to be developed and refined so that it may act as the core for a developing 

ecosystem of tools from the UK and more widely.  This should be complete to industrial quality by 

March 2023. 

We have investigated and demonstrated how online verification of a complex cyber-physical system 

could be undertaken at scale and within reasonable time constraints. 

It is important to understand that, for the proposed online simulation-based verification techniques 

to work, significant preparation in terms of instrumentation and implementation effort is required at 

design time. For instance, a suite of tests would have to be collected, specifically for the system to 

be monitored. This would include preparation of software agent parameters tuned and optimised 

for generalisability so that tests can be generated online if required. Also, algorithms to prioritise 

test cases based on operational feedback would be required. In addition, test cases would need to 

be labelled at design time for rapid test prioritisation, using e.g. different types of coverage data. A 

promising future area to explore in this context would be the role and utility of KPIs (Key 

Performance Indicators) and SPIs3 (Safety Performance Indicators) which may prove useful for the 

prioritisation of tests concerning performance or safety metrics.  

There is also an interesting research area surrounding the causal link between system or component 

failure and design changes. Understanding how changing system parameters may lead to failure at 

design time (using simulation) may better inform the identification of causal relations at runtime. 

Additionally, understanding the assumptions made for assurance cases allows formalising these in 

SPIs so that they can be monitored at runtime. Any violations of SPIs undermine the assurance case 

 
3 Koopman P., Wagner M. (2020) Positive Trust Balance for Self-driving Car Deployment. In: Casimiro 
A., Ortmeier F., Schoitsch E., Bitsch F., Ferreira P. (eds) Computer Safety, Reliability, and Security. 
SAFECOMP 2020 Workshops. SAFECOMP 2020. Lecture Notes in Computer Science, vol 12235. 
Springer, Cham. https://doi.org/10.1007/978-3-030-55583-2_26 

https://doi.org/10.1007/978-3-030-55583-2_26
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and can be used as early indicators of system safety being compromised. For example, the fact that 

the tyre tread is insufficient for cornering without skidding may help distinguish between a cyber-

attack on the braking system and a technical deficit that should have been picked up at the last 

MOT.  Likewise, monitoring the available CAN bus bandwidth and flagging up when the bandwidth 

required to support safety-critical functions is not being achieved, can help identify DoS attacks at an 

early stage. 

There was a general observation that the tools sought out and integrated for ResiCAV+ were useful 

because they were integrated into a framework and concern that critical parts of an engineering 

process might become inaccessible if they were tied up by any one party to the detriment of this and 

other industries.  One suggested solution to this was to form a UK company limited by guarantee in 

which HMG has a golden share.  This would then be responsible for licence techniques eg data 

science algorithms identified under this programme to those in the UK.  The suggestion that by 

retaining residual UK right in the event of a sale the developing ‘basket’ of rights will ensure that we 

do not develop a method which we then can’t use and by ensuring that it can be used in the UK will 

help to attract inward investment.   The idea of a company limited by guarantee, if successful, should 

within the next 5 years form the basis of a sovereign IPR fund ensuring: 

a. The freedom for UK cyber companies to operate in emerging markets from CNI, 

through health and mobility where safety and security are a consideration, 

b. inward investment to the UK (in order to access that IP), 

c. additional levers to prevent offshoring of high value skills and jobs 

d. HMG value for money for research and other investments made. 

With respect to the tools it was felt that a reference work defining a complete set of industrial 

quality tools necessary to operationalise the conclusions of this study within the ResiCAV+ 

framework should be developed and, once endorsed by the stakeholder community, be maintained.  

This reference was seen as very important and it was suggested that were an initial version of this 

reference available by December 2022 with an endorsed version available no later than Mar 2023 

then this would be tremendously helpful in planning future investment and metricating how close 

we might be to having a full methodology supported by tools.  

Again, with respect to tools it was observed that the cost to develop tools cannot, and should not, be 

borne by 1 party alone.  A number of the contributors observed that were they to develop this for 

their own use then every other OEM and tier supplier would need to do the same.  This would both 

result in high, unnecessary, and ongoing cost but would also run the significant risk of a ‘wild west’ in 

which key elements were tied up by one party to the detriment of others.  Accordingly, a fund of not 

less than £150m over 3 years, with an additional £100m available over the subsequent 2 years, 

available to tool developers generating IPR in the UK should be set up by the UK Govt to support the 

development of a world leading tool ecosystem. 

Tools developed or adapted for the ‘Framework’ and either publicly funded or using a significant 

contribution from public funding should be made available for licencing through the UK IPR Pool.  

The licencing terms must ensure that residual rights are retained in the UK in the event that the tool 

or IPR is sold. 

With respect to skills, it was observed that the net outcome of UN regulation 155 with respect to 

cyber has been to increase the skills deficit to a point where surveys have concluded that there is 

generally a deficit in the order of 0.5m cyber engineers in the automotive engineering ecosystem.  

This is a deficit which at current rates would have a cost of £ 75,000,000,000 per annum were it to 
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be satisfied; it was observed that the projected requirement is unachievable, and were it achievable 

unaffordable, and were it both achievable and affordable ineffective at scale.  ResiCav+ has 

demonstrated that the requirement to reskill and the type of skills could be achievable, affordable, 

and effective by prioritising the industrialisation of cyber resilience instead of trying to grow a highly 

paid cottage industry.  It was concluded that is important that this transition is achieved over the 

next 3 years before the cost of meeting regulations in the current manner makes this unaffordable. 

ResiCav+ has demonstrated that it is feasible to scale a tool based cyber resilience methodology in a 

complex system with emergent properties such that it could operate at a per vehicle (and per 

subsystem) level.  It has demonstrated that this tool-based method is not inconsistent with the 

current international regulatory framework and could be used by regulators in the next step of their 

forward planning.  Critically it was observed that the inability to update in a timely manner vehicles 

where that would violate the ‘Type Approval’ would likely become a point of cyber-attack over the 

coming 5 years. 

The dialogue with members of the automotive industry undertaken by ResiCav+ has suggested that 

in the context of CyRes and its concept of ‘significant difference’ one use of the ‘regulatory sandbox’ 

idea currently under consideration might be to allow updates to vehicles to take place in a timely 

manner where that might otherwise not be possible on the basis that the potential harm could be 

restricted.  It was observed that this would be consistent with a complex vehicle being effectively at 

all times in a prototype phase. 

The dialogue with members of the automotive industry undertaken by ResiCav+ has led to the 

observation that it is likely not possible to automate the feedback loop in all circumstances.  Equally 

it has been observed that it is not possible to achieve the volume or rate of updates that are 

foreseen to be necessary by using a wholly manual process.  It was concluded that the use of a 

distributed ledger recording the events and the decisions that were made, or were not made, on the 

basis of those events would be beneficial in ensuring that the operation of the engineering process 

in the face of a complex automotive system was defensible.  It was noted that this was likely the 

type of evidence that would be necessary to meet the Law Commissions foreseen criteria for an 

autonomy provider.    
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Appendix A BlockChain Transaction Schemas for RESICAV+ 

Purpose 

This appendix describes the guidelines for the integration of the private-permissioned 
Blockchain platform for use in Cyres systems including: 

• the identification of transaction types 

• the proposal of transaction payloads 

Areas Out of Scope 

This appendix does not consider the need of transactions’ encryption and access control, 
whose evaluation and implementation necessarily stem from considerations, outside the 
scope of this section.  

In addition, the details of how the data is stored off-chain is not defined since the specific 
implementation, for example through IPFS or Amazon S3, is completely transparent from a 
transaction perspective. 

Requirements 
1. Subsystems (or models) of the vehicle are sources of events, which are evaluated and 

simulated against candidate use-cases, to predict how the system will behave; 

2. Models, use-cases and events are bound within a set of assumptions about the range of 
inputs, system constraints and simulation parameters, under the umbrella-term 
configuration; 

3. Those events and behaviours outside of the constraints of the simulation need to be 
assessed by concurrent simulations with new parameters, as in the case of widening the 
inputs to cover these new found scenarios; 

4. According to the outcome of these new simulations, the system might became capable of 
handling the previously unexpected inputs or events, eventually confirming the validity of 
the newly generated configuration. On the contrary, if the simulation identifies the system 
does not behave as desired, another course of action is required. 

5. It should be possible to track the life-cycle of each configuration, specifically, the previous 
set of parameters and the simulation/event that caused its evolution. 

6. In order to limit the inevitable growth of blockchain storage, and related costs, it is 
mandatory to store vehicle and simulation data off-chain and to maintain integrity using 
hashes as file-anchors. 

Transactions 

Four types of transactions have been identified so far, namely Configuration (TC), Event (TE), 
Simulation Request (TSR) and Simulation (TS). Each transaction type contains two fields, 
subsystem and useCase, making them generic enough to be applicable to different aspects of 
the vehicle, this way satisfying requirement (1). Furthermore, there are some dynamic fields 
(configuration, eventInfo, simulationInfo) whose content depends on the specific transaction 
type, model and use case. 



   
 

 

40 
 

Format considerations 

In all implementations of Distributed Ledgers, transaction payloads are simply a set of bytes 
without a specific format. It is responsibility of the application layer (and smart contracts) to 
agree upon a specific structure. The possible choices range from a binary representation, 
optimised for speed and size, to a human-readable format at the expense of more verbosity. 
In this study, we used a JSON format since it is natively supported in almost all programming 
languages, facilitating the development of dependent software components. On the other 
hand, JSON does not limit the injection of different fields, which is mandatory to achieve the 
generality of our solution. Other formats have been considered, for instance YAML, 
MessagePack, Google Protobuf, etc., each one with a different trade-off among speed, size 
and ductility, however, each alternative is still compatible with the considerations in the 
following sections. 

Configuration Transaction (TC) 

The Configuration Transactions satisfy requirements (2) and (5), defining a specific and 
immutable set of constraints, thresholds and parameters as follows: 

{ 
    type: "configuration", 
    subsystem: "abs", 
    useCase: "test", 
    previous: null, 
    simulation: null, 
    configuration: { 
        DelayLim: 10, 
        WindowSize: 10, 
        dT: 1, 
        dyLim: 5, 
    }, 
} 

• Field previous contains the hash value of the previous configuration, this way maintaining a 
backward link to previous versions. A value of null indicates this is the first configuration for 
corresponding model/use case. 

• Field simulation contains the hash value of the simulation that validated the configuration. A 
value of null indicates this is a bootstrap configuration. 

• Dynamic field configuration contains constraints, thresholds and parameters. 

Event Transaction (TE) 

The event transactions satisfy requirements (3) and (5), containing all the information 
related to an anomaly reported by the vehicle, defined as follows: 

{ 
    type: "event", 
    subsystem: "abs", 
    useCase: "demo", 
    data: 0x12345678, 
    configuration: 0x12345678, 
    timestamp: 164394689, 
    eventInfo: { 
        ... 
    },     
} 
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• Field data contains the hash value of the data associated to this event, stored off-chain 
(requirement 6). 

• Field configuration contains the hash value of the associated configuration, used for the 
identification of the event. 

• Field timestamp contains the timestamp of the even, expressed in Unix Epoch. 

• Dynamic field eventInfo contains all the information regarding the specific event. 

Simulation Request Transaction (TSR) 

The Simulation Request transactions satisfy requirements (3) and (4), representing the 
request to start a new simulation in response to an event, defined as follows: 

{ 
    type: "simulationRequest", 
    subsystem: "abs", 
    useCase: "demo", 
    data: 0x12345678, 
    event: 0x12345678, 
    simulationRequestInfo: { 
        configuration: { 
        }, 
    },     
} 

• Field data contains the hash value of the data which will be used for the simulation , that 
could be different from the data behind the event (requirement 6). 

• Field event contains the hash value of the originating event. 

• Dynamic field simulationRequestInfo contains constraints, thresholds and parameters of the 
simulation. 

Simulation Transaction (TS) 

The Simulation transactions satisfy requirements (4), containing the outcome of a 
simulation, defined as follows: 

{ 
    type: "simulation", 
    subsystem: "abs", 
    useCase: "demo", 
    request: 0x12345678, 
    simulationInfo: { 
        outcome: { 
        }, 
    },     
} 

• Field request contains the hash value of the corresponding simulation request. 

• Dynamic field simulationInfo contains the outcome and other information regarding the 
simulation. 

Configuration traceability 

Figure 7 shows the relations among the different types of transactions. This emphasises and 
clarifies how it is possible to navigate backwards from a configuration to its generating 
steps, this way fully and immutably reconstructing its history. 
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Figure 7: Relationship between transactions 
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Appendix B: A Tool For Blockchain Dynamic Update to Support CyRes 
 

The ResiCAV+ team demonstrated a step forward in the methodology showing the use of simulation, 

the automatic generation of test cases and real time V&V for and on the simulator. The capabilities 

of Jitsuin’s RKVST (pronounced ‘Archivist’) was used: 

➢ to automate keeping track of the simulations, decisions, and updates (including ordering of 

these) with a view to being able to automate the production of compliance documentation 

and the inputting and outputting of threat information. 

➢ As part of automating the compliant loading of certified baselines onto individual vehicles in 

a legally defensible way. 

➢ Demonstrate the economic benefits of using Jitsuins technology in the context of making 

faster, confident decisions and reducing business risk 

RKVST is a blockchain-powered platform that enables supply chain partners to safely share 

configuration, environmental, and operational data which results in traceable, accountable and 

trustworthy operations for connected industry. It records “When Who Did What to a Thing” to 

create a complete and tamper-poof life history of any cyber-physical asset. 

This ‘golden thread’ of evidence can then be securely verified for proof of security and compliance 

by any authorized stakeholder: either the participants or their auditing authorities. The owner of the 

asset is in full control of which aspects of the life history they share, and with whom. If a part of the 

thread is shared then the external stakeholders know that the evidence is clear, complete, 

timestamped, and un-tampered. But parts of the thread that should remain secret, remain secret. 

RKVST wraps a complex mix of blockchain, smart contracts, cryptographic key management and 

federated access control into a simple-to consume platform and API that is accessible and usable by 

regular IT teams in regular industries. It is brownfield-friendly (no endpoint agent or estate refresh 

required) and does not require federation of IT assets (every participant signs in with their own 

corporate sign-in and keeps their main data store private). This achieves: 

• High-Definition Control: Ensure the right people have what they need to know and no more. 

• Assured Data Provenance: Full traceability and lineage on all data sources that feed critical 
decisions. 

• Continuous Accountability: Prove when who did what to any critical asset and build trust in 
digital operations. 

 

In Figure 8: Blockchain registration and storage of activities as smartcontract transactions.Figure 8 

below shows RKVST registering every critical activity in an Event record and storing evidence of that 

activity as smartcontract transactions on the blockchain.  The Events are then collected together to 

create a complete Service History or ‘golden thread of evidence’ for configuration, operation, and 

handling (Figure 9).  Figure 10 then shows the coordinating of players in the cyber physical security 

supply chain.  Each participant plays their part in the ‘team sport’ of security and configuration 

management, and the other participants are immediately aware of changes and exceptions. 



   
 

 

44 
 

 

Figure 8: Blockchain registration and storage of activities as smartcontract transactions. 

 

Figure 9: A ‘golden thread of evidence’ for configuration, operation, and handling 

 

Figure 10: Coordinating players in the cyber physical security supply chain. 
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Market context 
Digital Transformation today faces a problem: connecting together systems of systems requires data 

to flow across technical, organizational, and even geographic boundaries. In order to meet the 

promise of DX, components and systems need to trade operational data, act on each other’s signals, 

and automate critical decision-making, but without unduly increasing risk exposure. 

Herein lies a problem: for DX to work, data has to flow, but data security doctrine prefers to lock it 

up and keep it secret. Sharing data then becomes a complex exercise variously with federating 

identities, or making exception rules in protection systems, or configuring vast PKI systems. 

Leading analysts now identify that problem: 

“Secure and trusted data exchange across third-party ecosystems is a business necessity, however 

this often fails because of regulatory and trust concerns. Jitsuin RKVST offers businesses a scalable 

blockchain platform to enable trust and governance controls across sensitive information and asset 

sharing environments, and the confidence to advance new business models and outcomes.” 

Ralf Helkenberg, Research Manager, European Privacy and Data Security at IDC. 

“Every digital business moment leads to a decision that is powered, or held hostage, by data and 

analytics, it is no wonder that chronic issues have become more acute. [because of] Siloed data, lack 

of trust, misalignment to outcomes, a focus on data for its own sake…” 

Chris Howard, Chief of Research, Gartner 

“In Digital Transformation with Connected Things […] 62% of projects fail because of security 

concerns” 

Cap Gemini – Beecham Research - Why IoT projects fail - 2020 

 

To paraphrase the Gartner opinion, confidentiality is a 

relatively solved problem, but availability and integrity 

are not. This is not a cryptography or tools problem so 

much as a trust and control problem: even if a digital 

signature is used by my supply chain partner, how do I 

trust that the data within has not been back-dated? 

Their IT department own the keys: perhaps they could 

cheat. Perhaps they could hide the data when I need it. 

Perhaps their security policies are not as strong as 

mine and they have allowed misuse of the keys. 

 

RKVST aims to address these problems of collective trust by making every party accountable for their 

actions. If you do a good job then that is clear to see, but if something is missed or done incorrectly, 

that is equally readily found. And by modelling the data as Assets and Events, the platform avoids 

sharing ‘data for its own sake’ and concentrates on keeping a clean and actionable record of 

important operational data only. 

 

Figure: The familiar ‘CIA’ triad 
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Assets, Events, and Access Policies 
RKVST is an asset-centric system. Users track real-world asset histories by first creating a tokenized 

record for the Asset, and then registering Events against that record as things happen to it. The only 

way to change an asset property is by registering an event, which means that rich provenance and 

lineage is automatically available for all properties of the asset. For example, if an IoT device is 

shown as having a particular firmware version, the system will also tell you who patched it, when 

they patched, why they thought that was the right thing to do and what evidence they used to come 

to that conclusion. 

Access to the Asset record is mediated by Access Policies that enable fine-grained control of which 

Subject Principals (either a user in one’s own organization, or a partner organization) can read and 

write the Asset, and which properties are available to them. 

 

 

Figure 11: A simplified view of object relationships in RKVST. 

Behind the scenes, RKVST converts access policies into cryptographic keying relationships that mean 

that data is only visible to the right participants, and can be stored on the blockchain and verified by 

all legitimate parties whilst not revealing secrets to others on the platform, even when they have 

access to the underlying blockchain data.  All of this results in a golden thread of shared evidence of 

Asset interactions where authorized parties are certain that they see exactly the same version of 

data as all other authorized parties without the usual risks of version-mismatches, over-sharing, 

timestamp slip, or integrity issues.  This can be seen in Figure 12 below showing how different 

organizations have appropriate visibility of Asset and Event data. Data they can see is verified by the 

blockchain, so that they know they see exactly the same view as the other participants. Data they 

are not allowed to see is never available under an encryption key they can access, ensuring privacy 

and secrecy where needed. 
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Figure 12: Appropriate visibility of Asset and Event data for different participants. 

Witness statements and non-connected Assets 
It is important to understand that Events in RKVST are a series of ‘witness statements’ made by 

authorized users: they are not (necessarily) sensor readings directly connected devices or  

dependent on any IoT platform attestation service. The owners of an asset can specify any 

authorized party to contribute life history Events to the golden thread. 

This approach is powerful in cases such as connected infrastructure where each cyberphysical asset 

or system’s record must contain a full and coherent mix of direct sensor readings from the device, 

automated messages arising from cloud systems, and manual data entered from inspections, 

maintenance, or other interactions.  

In addition, real-world operations sometimes happen offline or in air-gapped facilities, and can only 

be reported later (for instance, when a maintenance crew complete their rounds and connect to a 

terminal or mobile device at the end of the day). For many practical reasons it is important to know 

when an event really happened: having them all listed as 17:30 PM and under the name of the 

manager or a system credential is not necessarily helpful. At the same time, for evidential value it is 

important to have proof that nothing could have been back-dated or modified. 

For this reason, RKVST allows clients to set the “WHEN” and the “WHO” in an Event to reflect what 

happened in the physical world, and then adds a tamper-proof record of when the Event was 

actually entered into the system. Discrepancies between these values are easily discovered and 

transparent to all relevant stakeholders in real time, making fault finding and record fraud easily 

discoverable.  

Timestamps 

Once committed to the RKVST system, each lifecycle event record carries 3 separate timestamps: 

• timestamp_declared - an optional user-supplied value that tells when an Event 
happened. This is useful for cases where the client system is off-line for a period but the user 
still wishes to record the accurate time and order of activities (eg inspection rounds in an air-
gapped facility). If unspecified, the system sets timestamp_declared equal 
to timestamp_accepted (see below). 

• timestamp_accepted - the time the event was actually received on the Jitsuin Archivist 
node’s REST interface. Set by the web front-end system, cannot be changed by the client. 
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• timestamp_committed - the time the event was confirmed distributed to all DLT nodes 
in the value chain. Set by the DLT back-end system, cannot be changed by the client OR the 
Jitsuin web front-end. 

 

Having these 3 fields enables users of Jitsuin Archivist to accurately reflect what is claimed, whilst 

also preventing tampering and backdating of entries. 

User principals 

Once committed to the RKVST system, each lifecycle event record carries 2 separate user identities: 

• principal_declared - an optional user-supplied value that tells who performed an 
event. This is useful for cases where the user principal/ credential used to connect to the 
Archivist system does not accurately or usefully reflect the real-world agent (eg a multi-user 
application with device-based credentials). 

• principal_accepted - the actual user principal information belonging to the credential 
used to access the Jitsuin Archivist node’s REST interface. Set by the system and retrieved 
from the authorizing IDP, cannot be changed by the client. 

Tenancy model 
While several deployment models are possible, offering varying degrees of flexibility and control, the 

main RKVST network runs as a multitenant SaaS on Microsoft Azure. Each participating organization 

(assumed to be a coherent legal entity) is assigned a ‘tenancy’ on the SaaS, with their own separate 

cryptographic keys, policies, and rich data store.  

The tenant owner is completely in control of user access to their RKVST tenant: Jitsuin does not store 

user accounts at all. Instead, the tenancy is strongly bound to the customer’s own Open ID Connect 

compatible identity provider (IDP) and Jitsuin verifies all accesses against that IDP. What this means 

in practice is that every company using the RVST is able to Bring Their Own Identity, adhering to 

their own IT policies, using their own trusted second factor technology, and having full control of 

revocation and user attribute management. 

In this way, companies using Microsoft AAD identity and Microsoft Azure computing are able to 

collaborate seamlessly with partners who prefer Forgerock identity and Amazon compute. No 

federation is required. No new passwords on shared systems. No need for proprietary data to leave 

their old silos or be consolidated on one large central store. Organizations keep working the way 

they work, with the policies they already understand, and just enjoy the benefits of trustworthy data 

for the elements they choose to share. 

When deciding which supply chain partners should be allowed to collaborate on which assets, 

tenants have the simple task of a one-time exchange of public identities, and then a flexible and 

powerful but familiar-looking read/write permissions interface. Jitsuin takes care of handling the 

blockchain specifics such as wallet keys, secure channels and so on.  Figure 13 below sets out a 

simplified model of the domains of trust in the multi-tenant SaaS deployment of RKVST. Enterprise 

identity management (yellow) is handled by the tenant organization. Key management and 

blockchain interfaces (red) are handled by Jitsuin. The transparent blockchain record provides legally 

acceptable proof of when who did what. 
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Figure 13: Simplified model of ‘domains of trust’ in a multi-tenant deployment of RKVST.  

Decentralised and distributed evidence base 
RKVST ensures that every tenant has fair access to their portion of the evidence base. If a dispute 

arises, or a supply chain partner goes bust, that party’s data is not lost with them.  

And while Jitsuin’s SaaS represents a central point of access and configuration surface for each 

tenant, even Jitsuin is held accountable through each tenant’s ability to verify their blockchain 

transactions and observe that the chain has not changed, and is the same as the one everyone else is 

using.  Figure 14 below illustrate critical supply chain partners collaborating on the golden thread to 

create a trustworthy single source of truth. 

 

 

Figure 14: Critical supply chain partners and a trustworthy single source of truth 
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Using RKVST Shared Asset Histories to find and prove problems 
 

More efficient, provable audit processes 

 

 

Figure 15: Addressing operational risk with trusted data, lineage, and asset provenance. 

With all of this understood, Figure 15 sets out how operational risk problems can be addressed with 

trusted data, lineage, and provenance of the assets that created it.   Using RKVST Shared Histories as 

a golden thread of evidence can clearly help to solve critical problems in cyber physical systems: 

issues not just of data and security but also of trust, risk, and liability. And because Event records can 

store evidence alongside them, it is simple to discover not only “what do we know now?” but also 

“what did they know at the time?”, “who authorised that?”, “were they acting within contemporary 

best practice?”. 

There are four simple steps to this: 

• Record: Every participant submits an honest record of WHEN WHO DID WHAT using their 
own IT systems and workflow 

• Consolidate: The system arranges these records into a coherent Service History for each 
Asset, with reliable timestamps and integrity data 

• Analyse: With the complete history available, hard questions that used to span 
organizational boundaries and data stores can now be asked easily: is this device up to date? 
Where did this configuration come from? Did anyone touch the asset while it was in an 
alarm condition? 

• Decide: Given all you know about the history and handling of this asset, how much do you 
trust it right now? Is it in a fit state to have the interaction you want? Are you confident you 
have the regulatory or other evidence you need to show that you made a good decision? 
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Augmenting real-time V&V 

In order to live up to expectations AI implementations need both a high quantity and very high 

quality of data inputs. RKVST can feed AI on known good sources and prove to others it made good 

choices, building confidence in the decisions and recommendations made by AI engines to boost 

enterprise adopters far beyond competitors on their digital transformations.  

By enabling confident exchange of data, the RKVST platform is already a huge leap forward for 

connected industries and digital transformation by creating a single, accessible, consolidated picture 

of the service history of any asset, and by extension its trustworthiness.  

Beyond exchanging single pieces of asset data (such as current location, alarm status etc.) the 

collective service history information can be used to identify important issues such as cyber 

vulnerabilities, maintenance errors, or handling policy violations. And because of the flexible JSON 

document structure at the heart of Asset records clients can write interrogation code to read this 

history and validate the parts that are important to their own specific judgements without the need 

for the RKVST system to have semantic understanding of their data fields.  This is very valuable in 

audit and Root Cause Analysis (RCA) situations after an incident, but it may be too slow and 

cumbersome for real-time decisions that might avert an incident. 

In order to assist with incident aversion and real-time V&V, RKVST features a capability called 

“compliance posture” which takes the processing burden off the client by providing a single, simple 

API call to answer the complex question: “given all you know about this asset, should I trust it right 

now?”. Additionally, and crucially for sensitive use cases, the yes or no answer comes with a detailed 

defensible reason why, which can be inspected by relevant stakeholders (including AI engines or 

compliance software) during or after the event. 

As an example, compliance posture policies can answer questions such as “Has my device remained 

unpatched for more than 30 days from a vulnerability report?” or “was the safe handling process 

carried out in the right order and with the right timing?” or “is a newer approved configuration 

available than the one I’m running?” 

This simple interface to answering hard problems allows real-time V&V of documentation, device 

configurations, or devices themselves, in order to make informed and defensible decisions about 

whether to proceed with a digital operation.  

As an example, it is well known by now that “things are only secure until they’re not”, and any 

software and hardware in the field for long enough will have exploitable vulnerabilities.  This makes 

existing simple practice for security rather fragile: even if a device has a hardware key and a 

production certificate, it may still have a software bug that enables rogue code to take it over. At 

that point things get a lot worse, since the rogue code is able to use that key to interact with the rest 

of the system, and many security products will let it straight through because of the supposedly 

strong identity of the device. Figure 16 below illustrates an Identity and Access Management (IAM) 

platform using RKVST compliance posture checks to make dynamic trust decisions for IoT devices 

that are trying to access a network resource. This capability helps to defend against certificate 

errors, lost keys, and compromised firmware, moving significantly towards a ‘Zero Trust’ model for 

IoT.  The IAM vendor has been able to adopt the compliance posture APIs to perform additional 

checks on IoT devices accessing enterprise resources. Instead of simply checking the production 

certificate and letting the request through, the IAM platform additionally checks the compliance 

posture of the device, for things like ‘firmware up-to-dateness’. If the check with RKVST fails then 
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the platform is able to respond appropriately, either by refusing access or going into a step-up path 

or allowing degraded access. 

 

Figure 16: Towards ‘zero trust’. Compliance posture based dynamic trust decisions for IoT 

Note that at present this compliance posture functionality is limited to identifying time gaps and 

maintenance event process flow in Asset records (providing insight to Service Level Agreement (SLA) 

or Maintenance, Repair, and Operations (MRO) failures) or vulnerability exposure windows 

(providing insights into responsible cybersecurity management). Jitsuin is heavily investing in the 

development of this functionality to enable much more valuable digitalization and automation use 

cases through a feature which we call “Explainable Trust for AI”. Please note that these are roadmap 

items and no promise can be made as to the timing of availability, but by the end of 2021 the 

platform is expected to have the following improvements: 

• Add richness to compliance policies so that they can include event and asset data. For 
instance: “do not accept this shipment if its rad level is greater than 7.”  

• Add dynamic tolerance to compliance policies for more powerful contextual decision-
making. For instance: “do not accept this shipment if it has been delayed more than 10% of 
average time.”  

• Add perspectives: In audit activities it is important to know “who knew what when?” or “is it 
reasonable to expect the parties to have known there was a problem back then?”. RKVST 
service histories can already answer this question through linear analysis. We intend to add 
additional automation to the compliance APIs that allow stakeholders to ask the 
retrospective question: “regardless of compliance posture now, given the data in the system 
at the time, would a trust check have passed or failed on date X, and why?” 

• Add semantic interpretation to compliance policies so that they can include interpretation of 
event and asset data. For instance: “do not accept this shipment if its tracking data is 
missing”, or “do not talk to this device if it has ever been seen outside the United Kingdom.” 
 

With all this done, AI automation becomes much more trustworthy and explainable in the real 

world: not only does the AI have a greater range of more trustworthy data to work with, but external 

stakeholders can also verify that they are being operated responsibly and machine errors can be 

thoroughly investigated. 
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Technical Interface 
 

API 
RKVST presents a simple REST API to fetch and manipulate the Asset and Event JSON. A full 

reference is publicly available at https://jitsuin-archivist.readthedocs.io/en/latest/  

Data structures 

Asset and Event records are extensible JSON documents, containing some fixed elements, and any 

number of custom elements provided by the participants. This extensibility is crucial in supporting 

industrial use cases where some parts of the system, or datatypes, or processes are unique and 

cannot be changed easily to meet the needs of a cloud computer system or IoT platform. 

Assets 

{ 

  # identity is a global UID for this asset 

"identity": "assets/6a84c94e-cedb-4934-bf04-7e97d866fe73", 

# behaviours determine which smart contacts the asset can interact with 

  "behaviours": [ 

    "Attachments", 

    "Firmware", 

    "LocationUpdate", 

    "Maintenance", 

    "RecordEvidence", 

    "Builtin", 

    "AssetCreator" 

], 

# attributes is a list of tracked attributes, with complete service history. 

# elements with an ‘arc_’ prefix are interpreted by the system. All others  

# are completely free and expansible by the participants. 

  "attributes": { 

    "nda_waste_code": "42", 

    # arc_attachments is a special attribute that allows the connection of 

    # large binary data to the ledger record – for example, safe handling 

    # manuals, photographs, or firmware 

    "arc_attachments": [ 

      { 

        "arc_display_name": "arc_primary_image", 

        "arc_hash_alg": "SHA256", 

        "arc_hash_value": "4afcecb8b2c1fdf5bcb487aca74831262be8b0aaeb4e69f5abc57a56db8485d4", 

        "arc_attachment_identity": "blobs/7c2cb418-591d-466c-a918-756553c2a6de" 

      } 

    ], 

    "arc_description": "An item called Oscar", 

    "arc_display_name": "oscar", 

    "arc_display_type": "Nuclear Waste Item", 

    "nda_in_container": "assets/9410c31f-6663-44e1-89af-9f69e6d1a004", 

    "nda_lifecycle_stage": "packaged", 

    "nda_namespace": "test1" 

}, 

# Confimation status tells whether it’s finalized on the blockchain or not 

"confirmation_status": "CONFIRMED", 

# Is the asset still actively being tracked? 

  "tracked": "TRACKED", 

  "owner": "0xe3B38F2aA6a0823178939eEDC70E50FFFF1e83E1" 

} 

 
 
  

https://jitsuin-archivist.readthedocs.io/en/latest/
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Events 

   { 
      # identity is a global UID for this event 

      "identity": "assets/6a84c94e-cedb-4934-bf04-7e97d866fe73/events/af79feb5-c09d-459b-818a-

1e979c43259b", 

      # foreign key to the identity of the asset it applies to 

      "asset_identity": "assets/6a84c94e-cedb-4934-bf04-7e97d866fe73", 

    # event_attributes is a list of attributes fo this event ONLY – a record 

    # of what happened, but does not update any other system or Asset state. 

    # Elements with an ‘arc_’ prefix are interpreted by the system. All others  

    # are completely free and expansible by the participants. 

      "event_attributes": { 

        "arc_display_type": "Characterize", 

        "arc_evidence": "No evidence provided", 

        "arc_description": "Calculated and applied fingerprint '42' to item" 

      }, 

    # asset_attributes is a list of Asset attributes that this event updates. 

    # The Asset record will be updated with these values, and the service 

    # history will show the evolving state of the Asset. 

    # Note 1: This is access controlled. The principal MUST have an access 

    # policy permission to wite this attribute value. 

    # Note 2: If this property does not yet exist on the Asset, it is created  

      "asset_attributes": { 

        "nda_lifecycle_stage": "characterized", 

        "nda_waste_code": "42" 

      }, 

      # Which contract/API was called? 

      "operation": "Record", 

      "behaviour": "RecordEvidence", 

      # Timetamps  

      "timestamp_declared": "2021-03-23T23:43:58Z", 

      "timestamp_accepted": "2021-03-23T23:43:58Z", 

      "timestamp_committed": "2021-03-23T23:44:00Z", 

      # Who registered the event and where did RKVST validate it against? 

      "principal_declared": { 

        "issuer": "https://login.microsoftonline.com/dc229635-5858-4fe3-9bef-

444f6c7ee1cf/v2.0", 

        "subject": "0dad5d0c-35e0-49f0-9381-0a8331e2efa9", 

        "display_name": "0dad5d0c-35e0-49f0-9381-0a8331e2efa9", 

        "email": "" 

      }, 

      "principal_accepted": { 

        "issuer": "https://login.microsoftonline.com/dc229635-5858-4fe3-9bef-

444f6c7ee1cf/v2.0", 

        "subject": "0dad5d0c-35e0-49f0-9381-0a8331e2efa9", 

        "display_name": "0dad5d0c-35e0-49f0-9381-0a8331e2efa9", 

        "email": "" 

      }, 

      # Blockchain details, for shared and mutually distrustful verification 

      # of the contents and timestamp of the Event for ANY participant. 

      "confirmation_status": "CONFIRMED", 

      "transaction_id": "0x5d135800554ff8a9029e302ff88446be0be6c56e49a7b268bbf78d94ea1463f6", 

      "block_number": 82453, 

      "transaction_index": 0, 

      "from": "0xe3B38F2aA6a0823178939eEDC70E50FFFF1e83E1" 

    } 

 

User Authentication 

Users, devices, and client software can authenticate themselves using one of 2 methods: 

• A bearer token, in the form of a JWT authorized by one of their tenant’s configured identity 
providers 

• Mutual TLS, using a client key signed by a CA that is trusted by their tenant  
Each individual command must carry user authentication: there are no ‘logins’ or ‘sessions’. This 

improves system resilience and simplifies client integrations by eliminating system-wide state, but 

more importantly it enables the system to validate each read and write operation against up-to-date 

sharing policies. 
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Note: The configuration surface of RKVST allows reference to users by friendly attributes such as 

name and email, but in the underlying system users are always identified and validated by their 

unique issuer:subject pair which ensures a clear cryptographic link back to their corporate ID system.  

Low-code and Zero-code integration 

As demonstrated in Figure 17 below, being based on stateless REST interfaces and having flexible 

authentication and message structures, RKVST supports zero-code integration with client systems 

and assets.  A zero-code cURL one-liner can be used to create a fresh Asset record, given a bearer 

token and a JSON document containing the Asset properties.   It is possible to create a client-side 

agent that links a secure-by-design hardware chip identity and strong message signatures to the 

events in the Asset record, but it is not necessary. 

 

 

Figure 17: Zero-code cURL one-liner to create a fresh Asset record. 

 

Use of RKVST for ResiCAV+ 
With all this known, the use of RKVST to support ResiCAV+ is simple:  

• Model the ideal baseline configuration as an asset (AM) 
• Any and all of the authorized participants (both humans and software agents from 

Warwick, Thales, Cardiff and Bristol) can then update the ideal model as learning or 
development proceeds. This can be achieved by a small REST call being added to the 
existing build processes and tools. 

• Every observer can see how the model emerges. 
• Model every platform as an Asset (APi) and store its configuration as Asset attributes. 

• Include significant difference identifiers and validation as access-controlled 
attributes 

• Add a REST call hook into the update server, to register the intent to update and the 
proof of why this is a good update to make. That proof can include a call to RKVST to 
compare the contemporary state of AM with the new baseline. 

• Add a REST call hook to the platform update code, to say where it got its update 
from, what the update looked like, and whether it applied successfully. The platform 
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can also perform its own realtime V&V by verifying the trustworthiness of the 
originator of the update and the current state of AM before accepting the update. 

• For Pattern of Life and Ordering assurance, the users can simply increase the number and 
granularity of Events registered 

• Regulators can also participate (possibly in a read-only capacity) and survey the entire estate 
for real-time compliance, process, and security, and can rely on having their own copy of the 
evidence base without any need to request extra docs o access to participant databases and 
systems.  

 

Meeting the ‘3 tests’ 
The purpose of the ResiCAV+ program is to improve the useful quality of electronic evidence 

gathering, as defined by 3 tests: 

➢ The methodology is capable of being tested in court or by publicly appointed regulators. 

➢ Operators understand what evidence should be produced by it and are able to measure the 

quality of that evidence. 

➢ The evidence produced is capable of being tested in court or by publicly appointed 

regulators. 

 

The methodology is capable of being tested in court or by publicly appointed regulators. 

While “the methodology” includes many things outside of the RKVST system, the RKVST architecture 

and workflows support this goal by linking each participant’s RKVST identity and access configuration 

directly to their own corporate Single Sign On and by extension to their existing testable corporate 

compliance standards. Therefore, issues of digital representation, control etc are easily examined 

and understandable. 

Operators understand what evidence should be produced by it and are able to measure the quality of 

that evidence. 

The flexible JSON document format of RKVST enables a tight and faithful correlation between the 

data in RKVST Asset histories and the data that each operator naturally understands and works with 

on their local/native systems and processes. Therefore, operator understanding is readily achieved. 

Evidence quality assessment is supported by two of the main features of RKVST: 

• The high integrity features which ensure that Events cannot be backdated, tampered with, 
or removed. 

• The fair access that ensures every authorized participant has access to their complete data 
set without the need to request access to other people’s databases. 

 

The evidence produced is capable of being tested in court or by publicly appointed regulators. 

In cases where the regulator is known and constant, they may have their own RKVST tenancy and 

review the evidence shared with them at any time: even ahead of any court action. 

In other cases, the regulator can easily gather evidence from every participant and quickly compare 

them for integrity against each other and against the shared blockchain record. Any discrepancy is 

quickly identified since attempts to hide or change Event data will show up when comparing the rich 

evidence to the blockchain. 
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Furthermore, a common problem with RCA and testing disparate data sets in court is comparing 

timestamps: how to consolidate many fragmented logs if you can’t be sure what happened when, or 

whose clock was more accurate? With RKVST (and blockchain systems in general) the timestamps 

and ordering are inherently aligned, making analysis fast and reliable. 

A Note on Digital Twins4 

Dynamic Resilience 
The DTC security and Trustworthiness group focuses on “Dynamic Resilience”. Many things can 

change after the initial design of a component or digital twin system: software bugs may be 

discovered, compliance standards may change, physical faults may develop, operator training 

standards may slip…it is not knowable up-front every possible failure mode or their consequences.  

Given this, a heavy focus on one technical aspect of security may prove ineffective against emergent 

threats or environmental factors and check-box static compliance policies will fail to find to prevent 

problems. 

Additionally, Digital Twins only exist in a DX context where a Physical Twin is connected. Physical 

infrastructure evolves much more slowly than the virtual, and so many incremental system upgrades 

and component swaps can be expected over the life of a Digital/Physical twin pair. Each time this 

happens, the design files, security assumptions, provenance data and operating models of the new 

software and hardware pieces need to be folded into the existing twin system and the entire system 

needs to be re-certified and re-tested against its safety models. 

Such re-certification is a well-known part of Configuration Management and Systems Engineering 

disciplines. But typical CM/SE processes are heavily manual and require a lot of cross-checking. The 

data in them is silo’d and pulling sufficiently high-quality supply chain data to add to the 

evidence/assurance base is hard. These processes simply cannot scale to the complexity and pace of 

change that DX demands.  Automation based on trustworthy operating and security data from 

partners is essential.  

Most Digital Twin designs do not yet include Dynamic Resilience, nor do they often feature the kind 

of process traceability. 

Frequency and Fidelity 
“A Digital Twin is a virtual representation of real-world entities and processes, 

synchronized at a specified frequency and fidelity” 

- Digital Twin Consortium definition 
No matter how good Digital Twin models are, they will have limitations. It is important to 

understand the quality and timeliness of the connection between a sensor and the data it produces 

in order to understand how trustworthy the twin might be for a particular use case. Accurate data 

showing up 1 day late might be just as bad as inaccurate data arriving every millisecond. Or they 

might be fine. But that call can only be made if the frequency and fidelity of synchronization is 

known and transparent for all sources, both internal to the owning organization, and external. 

 
4 The author of this section of the report presently serves as Chair of the Security and Trustworthiness Working 
Group in the Digital Twin Consortium and actively contributes to the development of standards and best 
practices for trustworthy Digital Twin deployments 
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And of course, don’t forget the source of the synchronized data also needs to be very keenly 

understood.  Without additional safeguards if a rogue operator puts their hand over a thermometer, 

it will very faithfully report a wrong temperature. 

Environmental Context 
Some important factors to security and safety belong to no particular organization and are not 

necessarily electronic or digital in nature, so they stand no chance of being included in any individual 

Digital Twin or Digital Twin Model. And yet they need to be taken into account if the twin is to be 

trusted with automation. Whether an active attack, or an accident, a component recall or a freak 

weather event, the operating context must be taken into account. 

Use of ledger-based technologies to address these problems 
A ledger is a very effective way of solving all these issues, for example by allowing threat intelligence 

to be reported easily once by a reptable source and retrieved wherever it’s needed, and by tracing 

all of the necessary dynamic data that is needed for the execution of effective dynamic assurance 

cases. 

 

 

For a more in-depth treatment on this topic, please refer to this Cutter Business Technology Journal 

article by the same author: https://www.cutter.com/offer/security-trustworthiness-digital-twin-

systems 

 

  

https://www.cutter.com/offer/security-trustworthiness-digital-twin-systems
https://www.cutter.com/offer/security-trustworthiness-digital-twin-systems
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Appendix C: The Significant Difference Tool 
 

Background 

Motivation Diversity inspired Defence Strategy 

• Originally used to indicate the sustainability and survivability of an ecosystem 

• Diversified components make the overall system resistant against sudden changes, faults 

and attacks 

• Digitally identical components fail at the same time giving rise to catastrophic failure. 

Diversity inspired strategy studied since the 1970s to enhance the security and resilience. 

• N version programming, program obfuscation, code randomization, etc. 

• Diversifying routing nodes, software packages, OS, etc. 

• Antenna diversity for key generation, architectural diversity for FPGA, etc.  

Previous work: Attack Graph - Based Diversification Tool5 

➢ Generate diversified deployment when upgrading ICS with dynamic IT systems. 

➢ Statistically measure the vulnerability similarity between software based on CVE database. 

➢ Adapting to various changes and constraints in ICS. 

What’s missing 

➢ Difficult to determine one component is significantly different from another. 

➢ Lack of a valid diversity metric and generic way to measure diversity. 

➢ Evaluate resilience brought about by diversification. 

Work Package Aims 

➢ Focusing on exploring structural similarities and interdependency between components. 

➢ Quantifying diversity by similarly vulnerable structures (i.e. vulnerable primitives) of components. 

➢ Effectively evaluate human-input diversification strategies prior to deployment. 

  

 
5 T. Li, C. Feng and C. Hankin, "Scalable Approach to Enhancing ICS Resilience by Network 
Diversity,"50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks 
(DSN), 2020, pp. 398-410, 
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Appendix D: Machine Learning Classifier Predication Tool Using 

Dissimilarly Measures 
Object and signal classifiers can be regarded as one of the key components in Autonomous Systems. 
For example, robust obstacle detection is an important step in allowing any unmanned vehicle to be 
aware of its environment and make safe and effective navigation decisions. However, in order to assist 
in providing robust and safe path planning and collision avoidance, detection and tracking of objects 
has great impact on the vehicle’s understanding and identifying of safe routes.  Our confidence in the 
expected performance of the classifier, given information about the system environment, is an essential 
element of the overall system trustworthiness. 

This work applied new techniques developed in Thales UK to enhance the V&V processes in complex 
autonomous systems, produce the evidence and give confidence in the use of Artificial Neural Network 
(ANN) classifier’s in terms of adequacy and their accuracy, grounded in Thales use cases. The 
verification process contributes to the safe operation of vehicles and the safety of people.  

The objectives for this work were: 

• To establish the user/application requirements for classifiers 

• To select and train classifiers targeted for specific applications 

• To verify and predict classifier performance (an integrated process) for real-time operations. 
 

Scope 
This tool addressed several challenges for targeted use-case applications and demonstrated the 

following features: 

• A method for classifier performance prediction during operation  

• A method for self-verification during operation where the related requirement specifies a 
permissible range of values for the domain of the classifier resilience function  

• The verification of ANN classifiers against requirements for the targeted application 

• Dissimilarity and test coverage measures for the verification process  

• Specification of ANN classifier requirements as part of the verification process so that they 
state the permitted forms of multiple classifier resilience functions (i.e. stating the required 
generalisation capability of an ANN classifier for each quantifiable dataset property 

 

Technical Approach 
The approach was to provide a means of systematically verifying the behaviour of ANN classifiers that 
use real-world imagery input for a targeted use-case application. Methods were established to verify 
the correctness, performance, and behaviour of the classifiers. There was an emphasis on 
characterising the properties of datasets, and the ability of classifiers to generalise over these 
properties. Detailed or component classifier requirements had to be specified and verified in line with 
broader requirements.  

The process for this is provided in Error! Reference source not found.. We have defined a Classifier 

Resilience Function (CRF) in order to indicate to what extent the classifier performance is maintained 

as it is tested on a series of datasets which, by some measure, are progressively further from the dataset 

on which the classifier was trained. The CRF indicates the ability of the classifier to generalise to more 

distant test datasets. More generally, the domain of the function could be any quantifiable property of 

test dataset dissimilarity. 
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Figure 18: Classifier based on Training, Offline and Online Verification. 

Figure 18 illustrates the three phases of quantifying the properties and verification of classifier 
performance. Here, off-line refers to the training and testing phases and on-line refers to the real world 
operation of the classifier. Classifiers are trained using real data captured by sensors, or using synthetic 
data. This data forms the training dataset and test dataset. Classifiers are put through performance 
tests using unseen test datasets. Performance on a test dataset is measured using some metrics 
developed at Thales UK. By some measure how far or how separate is the test dataset from the training 
dataset. Measuring and quantifying test dataset properties allow the level of performance to be 
expressed as a function of these properties for a given classifier selected for a specific use-case 
application. The classification performance is qualified by specifying to what extent the test dataset will 
challenge the classifier. During an autonomous system’s operation, the “dissimilarity” measure can be 
calculated using datasets captured on-line, that is to say sets of images captured by the system over 
methodically determined time intervals.  

As shown in the off-line requirement verification phase in Figure 18, during initial requirement verification 

there are possibilities to re-train the classifier, change the classifier, change the performance demand 

based on the application and the range of dissimilarity addressed, prior to putting the classifier into 

operation. 

Work Structure 
This work is to use the tool developed at Thales UK to generate concrete test cases for evaluation of 
autonomous vehicles (AV). It includes: 

• The use of Scenario Description Language (SDL) 

o SDL describes the static content (e.g. road network) and dynamic content (e.g. 
vehicle manoeuvers) of AV test scenarios 
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o Start with high-level, abstract scenario description, i.e. human readable (interpretable 
by various stakeholders, e.g. regulators, users, developers, testers) 

• Generation of executable tests for execution in a synthetic environment; Many concrete 
scenario descriptions are generated from an abstract scenario description by varying 
parameter values (e.g. vehicle speed, weather, road layout) 

Tool Chain 
The architecture diagram in Figure 19 illustrates some of the key components and interfaces to the 

Thales UK’s developed tool chain. 

 

 

Figure 19. Architecture for automated generation of executable test cases for SDL. 

 

Figure 20 shows the tool chain developed by Thales UK. 

 

Figure 20. Architecture for automated generation of executable test cases for SDL.  
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Appendix E: A Tool For AI Driving of Real Time V&V 

Introduction 
The CyRes methodology has been demonstrated as a possible solution to mitigate against cyber-

attacks in the face of autonomous and cyber-physical systems deployed on a mass scale which may 

be vulnerable to a single attack. 

In this section we demonstrate how part of the CyRes pipeline was realised using the techniques and 

methods of online simulation-based verification that researchers at the University of Bristol’s (TSL) 

Trustworthy Systems Lab have experience in. 

Objective 

CyRes is an innovative engineering method for operational cyber resilience. It aims to enable cyber   

resilience against vulnerabilities of mass-adopted cyber physical systems. One approach to achieve 

this is the introduction of significant difference in otherwise digitally identical individual systems. 

Traditional production processes of digital systems are designed to keep what is produced as similar 

as possible to leverage economies of scale. This makes all digitally identical systems vulnerable to 

the same cyber-attack, potentially at the same time. The deliberate introduction of significant 

difference aims to counter-act this weakness. 

Thus, significant difference will be introduced to prevent an epidemic-type response to a specific 

cyber-attack against a large and complex cyber-physical system. For example, this could occur 

against a fleet of CAVs (Connected and Autonomous Vehicles). Any difference that is introduced may 

have unintended consequences that might, for example, compromise the safety or functionality of 

the overall system. 

The expertise at TSL provided insight into the properties of the proposed differences by utilising 

advanced verification techniques and environments. In particular, runtime verification techniques 

employed to assess whether the proposed differences give rise to unintended functional or safety 

related changes in system behaviour.  

Part of the CyRes process pipeline is shown in Figure 21. The process begins with the identification of 

system instability through a monitoring process. This stability monitoring identifies an instability in 

the system which may then trigger a request for a significant difference to be generated. The 

significant difference generation process would identify a difference or set of differences. This set of 

candidate cases can then be analysed by an online simulation-based verification process which 

would seek to ensure any candidate design proposal would result in functional equivalence with the 

original, including safe operation. This candidate design can then be passed on to the next stage in 

the pipeline. 

 

Figure 21 A section of the CyRes process pipeline. 
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Process in detail 
To illustrate the process further we take the case study of a vehicle braking system. Prior to the 

online verification in the pipeline, the stability of the system is monitored for a potential cyber-

attack. Figure 22 is an example of some of the possible data channels required for monitoring the 

braking system. Key data channels for the braking system may include velocity, acceleration and 

steering angle of the vehicle which are internal sensors to the vehicles.  

Additionally, there may be data channels that exist partially or entirely external to the vehicle. These 

may include dv2v (the distance to the leading vehicle), messages between the vehicle and the local 

infrastructure (V2I) and location tracking such as GPS. These signals will be carried around the 

vehicle on a bus network, which is commonplace in modern vehicle systems. 

 

Figure 22 An example of internal and external data signals arriving on a vehicle bus.  

The data channels used in the braking system shown in Figure 22 may be susceptible to attacks on 

the communication between subsystems on the network such as a variety of Electronic Control Units 

(ECUs) serving different in-vehicle domains. Two types of attack are used in this example; where a 

delay on a signal reaching the bus is introduced and, where packet loss occurs in a signal.  The 

attacks in this case study are; a delay in the dv2v signal shown at Figure 22 (a) and missing data or 

packet loss shown at Figure 22 (b). Such attacks can be easily modelled, and the stability analysis 

tool can be used to discern such an attack from general network traffic or signal noise. 

Attacks may result in changes in the observable behaviour of the system. For example, a delay to the 

dv2v signal reaching the vehicle control system may result in an improper distance being kept to the 

leading vehicle in a driving situation where the autonomous vehicle is following another road user. A 

delay on other signals, for example the steering angle may result in disruption to the control 

algorithms that maintain the vehicle in the centre of the lane. Both of these externally observable 

behaviours can be monitored and assessed independently of the observations within the vehicle 

network bus. Simulation can be used to assess the safe operation of the vehicle based on its 

externally observable behaviour. 

Simulation-based Verification at Runtime 
The use of simulation in the CyRes methodology is manifold: 
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• Simulation can be used to help identify potential threats using online behavioural 

monitoring in close combination with a stability monitoring process. 

• By identifying potential attack vectors (where in the vehicle an attack is targeting), 

simulation can be used to determine whether the vehicle has been brought back to safe 

operation following a mitigation action. 

• Simulation can provide insight into the potential impact of an attack once an attack has been 

identified. 

• Simulation can also be used to assess whether the application of design changes to achieve 

significant difference result in functional and safety-related equivalence in the modified 

system.  

Although there is merit in all these uses of simulation, this report will focus on the last point in the 

following sections as this pertains directly to the CyRes methodology pipeline under consideration. 

Automated Test Generation 
Test case generation forms an integral and necessary part to the simulation aspect of the toolchain. 

Without suitably defined test cases the simulator cannot operate. Test cases provide stimulus to the 

simulation and can be used to drive the simulation towards certain conditions of interest with 

respect to verification. For example, if pedestrian safety is part of the verification task, then test 

cases should guide the simulation toward scenarios involving pedestrians to assess CAV behaviour. 

The behaviour of the CAV can be witnessed in simulation and is written into logs for checking. The 

evidence so gained could then be presented if and when required by regulators or legal challenges. 

To identify suitable automated test generation techniques, it is first necessary to describe the 

verification process that will be called upon and how the simulation results can be interpreted into 

simple pass or fail categories. An example testbench is shown in Figure 23. 

Simulation-based Verification 
The use of simulation aligns well with the CyRes approach, where simulation can be used to test 

variants of the system design for functional equivalence and safety prior to applying a change of 

significant difference. 

At the centre of the testbench is the simulator, which needs information about the static and 

dynamic elements that will be needed at runtime. For the braking scenario this may include static 

objects such as a road with line markings, and dynamic objects, or actors, such as the autonomous 

vehicle under test and a vehicle that it is following. These static and dynamic objects will be called 

from the experiment instantiation which will convert the experiment specification to a machine 

readable and executable form. The experiment specification contains part of the information 

needed in the test case and these will be driven by requirements. Coverage can be defined based on 

different aspects, as shown in Figure 23. Coverage models include requirements coverage to ensure 

tests cover the original requirements, implementation-specific coverage to ensure all code in the 

system has been tested, i.e. different forms of code coverage, and also coverage to confirm that all 

functionality has been observed, i.e. functional or assertion coverage. 
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Figure 23 Example testbench for simulation-based verification of autonomous vehicles. 

In the use case described here, the requirements will need to specify the safe operation of the 

vehicle following a significant difference made to the system. It is therefore necessary to have test 

cases that: 

• Demonstrate the changes made do not adversely interfere with the safe operation of the 

vehicle, 

• Demonstrate that no unintended consequences that may impact on the safe operation of 

the vehicle have been introduced into other aspects of subsystems as a consequence of the 

changes, i.e., if there was a change in the speed monitoring that this change did not 

adversely impact other aspects of the vehicle dynamics such as acceleration.  

Moreover, if test cases are to be generated automatically to align with the CyRes framework then 

these should follow the principles of a ‘good test case’ by Fewster and Graham6 which are shown in 

Table 1. Test cases should be effective in finding bugs and more specifically to CyRes, should be 

effective in determining if the significant difference made to the system will result in unsafe 

operation. Considering the manner of deployment for CyRes, the principle should be to monitor the 

system during operation and therefore any test cases online may need to find bugs or issues with 

the changes efficiently, i.e., by executing as few test cases as possible. Test cases should also use 

resources efficiently by minimising simulation cycles and leveraging the use of efficient 

computational libraries.  

Robustness is the final criterion in the list of qualities for a good test case which warrants a 

dedicated explanation. Test case robustness is the quality associated with reuse following a software 

or system change. If a test case is generated but is also effective in the testing of a different system, 

then it becomes highly effective. This is of particular importance to the CyRes method, as the 

fundamental approach will be to simultaneously test sets of candidate cases with significant 

difference applied. If a single or small number of tests can be used against a larger set of candidate 

designs, then such test cases are highly desirable.  

 
6 M. Fewster and D. Graham, Software Test Automation, Addison-Wesley Reading, 1999. 
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Criteria Definition 

Effectiveness How effective the test case is in finding the failures in the 
system if they exist 

Efficiency Minimising the number of test cases required to achieve a level 
of confidence in the design change 

Economy Economically using resources such as simulation cycles, CPU 
hours, LOC (lines of code) 

Robustness The robustness of the test case to changes in the system or 
updates. This is particularly pertinent as robust test cases can 
be efficiently reused on subsequent design changes. 

Table 1 The principles of a good test case7. 

Test Generation Methods 
A good account of the taxonomy of model-based test generation methods is given by Utting8 shown 

in Figure 24. A well-used method for test generation falls under the random class as this is usually 

considered low-hanging fruit in the initial stages of collecting coverage which is relatively inexpensive 

and no significant intervention from verification engineers is required. However, as the verification 

task continues there will come a point at which the effectiveness of the random method decreases 

and the rate of collecting coverage or bug discovery plateaus. 

On reaching a plateau, other methods may be employed to reach the remaining edge cases faster 

than a random technique may achieve them. At this point the test generation needs to be more 

focused. This may include using a constrained approach to direct or bias random test generation, 

where the bounds of the parameter randomisation are constrained to force the test generation into 

certain areas. This technique may initially be effective, but ultimately becomes less economical for 

complex DUVs (Device Under Verification). 

 

 
7 M. Fewster and D. Graham, Software Test Automation, Addison-Wesley Reading, 1999. 
8 M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based testing approaches,” Software 
Testing, Verification and Reliability, vol. 22, no. 5, pp. 297– 312, 2012. 
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Figure 24 Taxonomy of model-based test generation methods9. 

Random test generation methods are well suited to the CyRes methodology as they can be easily 

automated, but ultimately greater efficiency may be required when there are time-constraints on 

receiving the verification results, as is the case for runtime verification. In the spirit of a search-based 

approach, research at TSL suggests an additional entry into the model-based test generation 

taxonomy, namely agent-based test generation. The agent-based approach uses reward driven 

software agents that are tasked with achieving the verification objectives, e.g. reaching coverage 

targets. A set of software agents can then be directed to interact, coordinating their behaviour in 

response to the system’s observed actions in order to increase the likelihood of finding the edge 

case required to reach coverage targets more efficiently. 

The agent-based technique creates two new entries in that taxonomy, a new Paradigm under Model 

Specification, Agent-based, and a new Technology under Test Generation, Agency, which includes 

reactive reasoning, causality and strategic planning between multiple agents in the test 

environment.  

Machine Learning for Test Generation 
The use of agent-based test generation brings up the debate of how such agents are instructed or 

trained to find their verification goals? A traditional MAS (Multi-Agent Systems) approach would set 

rules for each agent to follow based around the BDI (Belief Desire Intention) framework10. This 

approach requires each agent to perceive their environment, itself and other agents which forms a 

set of beliefs. Agents can select plans based around their intentions which are guided by their belief 

set to reach their goals (desires).  The BDI approach to achieving agent goals can be very effective11, 

but generating sufficient rulesets for large complex systems could be onerous and not conducive to 

an automated pipeline required for CyRes. 

An approach to this issue may be to allow the agents to learn part of the ruleset by trial and error. 

This combines an element of randomness during a period where the agent learns which actions that 

result in favourable outcomes. The approach of Q-learning12 is model-free and needs limited 

knowledge of the domain or the rewards beforehand, but relies on the agents to learn the optimal 

action policy based on reinforcement learning. This approach trades flexibility with a period of 

learning. Agents are assigned goals which are transferrable to any domain and therefore robust but 

must spend an amount of time to find an optimal control policy.  

One of the keys to developing robust agents that can learn generalisable policies suitable for new 

and unseen domains is to expose the agents to a diverse set of training domains through 

randomisation of the parameters in the simulation environment. This is an extension to the original 

agent-based test generation approach13 where the agents themselves are initialised in different 

 
9 M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based testing approaches,” Software 
Testing, Verification and Reliability, vol. 22, no. 5, pp. 297– 312, 2012. 
10 Araiza-Illan, D., Pipe, A. G., & Eder, K. (2016). Intelligent agent-based stimulation for testing robotic software 
in human-robot interactions. ACM International Conference Proceeding Series, 9–16. 
https://doi.org/10.1145/3022099.3022101  
11 G. Chance, A. Ghobrial, S. Lemaignan, T. Pipe and K. Eder, "An Agency-Directed Approach to Test Generation 
for Simulation-based Autonomous Vehicle Verification," 2020 IEEE International Conference on Artificial 
Intelligence Testing (AITest), Oxford, UK, 2020, pp. 31-38, doi: 10.1109/AITEST49225.2020.0001 
12 Watkins, C. J. C. H., & Dayan, P. (1992). Q-Learning (Vol. 8). 
13 G. Chance, A. Ghobrial, S. Lemaignan, T. Pipe and K. Eder, "An Agency-Directed Approach to Test Generation 
for Simulation-based Autonomous Vehicle Verification," 2020 IEEE International Conference on Artificial 
Intelligence Testing (AITest), Oxford, UK, 2020, pp. 31-38, doi: 10.1109/AITEST49225.2020.00012. 

https://doi.org/10.1145/3022099.3022101
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locations for each training episode yet the static environment itself remained unchanged. However, 

the objective in both approaches is the same, diversify the experience of the agents to generate 

more generalisable action policies.  

Some researchers suggest using a second learning algorithm to generate the randomisation of the 

training environment that uses a min-max adversary that seeks to minimise the performance of the 

verification agent providing it an opportunity to find and learn from the weaknesses in its policy. This 

can sometimes lead to unsolvable scenarios where the adversary always succeeds by creating 

domains in which the verification agent can only lose. New research suggests improvements to this 

by limiting the adversary to generate domains that are solvable in a method termed Protagonist 

Antagonist Induced Regret Environment Design (PAIRED)14.  

Reinforcement learning has been shown to solve large and complex problems in a timely fashion. An 

example is the success of the AlphaGo program15, which used 1202 CPUs distributed across several 

servers to analyse 100’s of possible moves within the time restriction of the game, typically 5s per 

move during the development cycle of the program. This demonstrates that the reinforcement 

learning approach can work at a large scale on a complex problem and, with the appropriate 

computational infrastructure, it returns results in a timeframe suitable for it to be used at runtime as 

part of the CyRes method. 

Generally, machine learning tends to be limited to the training data available to it and as such can 

fail to generalise an agent’s actions to unseen situations. This can be, and is, successfully averted by 

the use of simulation where new training data can be generated until confidence in the action policy 

meets the requirements for the agent’s objectives.  

Test Case Prioritisation & Labelling 
Following test case generation there may be merit in arranging the execution order of the tests to 

promote those more pertinent to safety related issues for the design case in question. For example, 

if a modification was performed to the design in ‘sub-system A’ the test prioritisation could be 

ranked to ensure safety and functionally critical tests related to that subsystem are executed first. 

This approach aims to uncover flaws in the modified system early on, rather than using a fixed order 

of tests or using random test selection. By detecting a design’s functional flaws or safety concerns 

early, subsequent test cases need not be executed, potentially saving significant computational 

resources. Designs that have been flagged as flawed or unsafe due to assertion violations may be 

immediately discarded and priority can then be given to another design from the candidate cases. 

In order for the prioritisation to operate successfully at runtime, test case labelling must be 

completed prior to operational readiness. Test cases must be labelled to indicate what aspect of the 

verification process they attend, what coverage they have achieved. This allows a set of test cases to 

be called upon that can assess specific functionality or safety requirements. This collection of 

labelled tests will be compiled at the design stage of CyRes and will optimise runtime performance. 

 
14 Dennis, Michael, et al. "Emergent Complexity and Zero-shot Transfer via Unsupervised Environment Design." 
arXiv preprint arXiv:2012.02096 (2020). 
15 Silver, D., Huang, A., Maddison, C. et al. Mastering the game of Go with deep neural networks and tree 
search. Nature 529, 484–489 (2016). https://doi.org/10.1038/nature16961  

https://doi.org/10.1038/nature16961
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Online Verification for CyRes Advance 
Building on the success of previous research at TSL16 and the future trends in building generalisable 

agents that can succeed in unseen domains17, we propose the following process to the CyRes 

method. In Figure 25 we illustrate the fundamental principle, which follows the test case for a 

braking system and using online simulation to provide rapid verification assessment.  

The verification requirements were defined and written prior to operation and potentially remain 

invariant throughout the assessment lifecycle barring any significant changes to the expected 

behaviour of the system. These requirements must be accessible and parseable to the online 

simulation and guide the test generation method towards achieving the goals of the verification, be 

that discovery of pertinent bugs or any prescribed coverage that is needed.  

An automated testbench manager had access to the verification requirements and used these to 

make decisions on the types of test cases that needed to be executed. The testbench manager 

invoked test cases from a set of test generation method classes. These classes included simple 

random techniques which can be parametrically searched. Another option was to use existing or 

known test cases from a test case library which may be pertinent if sub-systems of the DUV are 

identical and simply require a confirmation that expected functionality and safety also remains 

unchanged. An ML (Machine Learning) and AI test generation methods class would also be available 

as part of the test generation methods group. It was invoked to provide intelligent, reactive test 

cases. 

Within the ML & AI Class the testbench manager used the verification requirements to target 

specific verification goals, invoking tests that drive the simulation towards particular coverage. 

Previous work (see footnote 11) has shown effectiveness in giving agency to dynamic elements 

within the simulation but current research trends also show that an improvement in effectiveness 

can be gained through use of an adversarial domain agent responsible for the generation of the 

static environment which can further enhance the effectiveness of the test cases. 

Invoked test cases generated the static and dynamic elements required for the simulation to run. A 

design case was chosen from the set of candidate cases and tested in the simulation. The simulation 

job being sent to a distributed cluster to execute. It is possible that groups of jobs can be sent 

simultaneously and executed in parallel for accelerated progress. 

Upon completion of the executed job or batch of jobs, assertion testing on the simulation log files 

can be performed, either locally or remotely, to check for assertion violations. These indicate a 

failure with respect to the verification requirements. During testing, each activated assertion, 

whether passed or failed by the tests, contributes to test coverage. The testbench manager 

repeatedly invokes tests to collect further coverage until there is satisfactory coverage across all 

verification requirements. Initial performance evaluation of this approach suggests that, instead of 

post-processing after the simulation has terminated, assertion checking can reasonably be 

performed on-the-fly, i.e. during simulation. This has the benefit that simulation could in principle be 

terminated as soon as the first assertion violation for a given design modification has been detected, 

saving valuable simulation resources and time. 

 
16 G. Chance, A. Ghobrial, S. Lemaignan, T. Pipe and K. Eder, "An Agency-Directed Approach to Test Generation 
for Simulation-based Autonomous Vehicle Verification," 2020 IEEE International Conference on Artificial 
Intelligence Testing (AITest), Oxford, UK, 2020, pp. 31-38, doi: 10.1109/AITEST49225.2020.00012. 
17 Dennis, Michael, et al. "Emergent Complexity and Zero-shot Transfer via Unsupervised Environment Design." 
arXiv preprint arXiv:2012.02096 (2020). 



   
 

 

71 
 

If the chosen design violates one or more assertions, then the testbench manager may invoke, 

resources permitting, further tests within the same area to determine if the violation is a single 

event or a trend. These designs can be considered failures as they failed to meet the requirements 

for verification. At this point the design can be discarded from the set of candidates or indicated in a 

report log that the design was excluded for failing certain tests. 

 

Figure 25 Use of simulation for online verification in the CyRes framework. 

Distributed Ledger 
When operational software is changed a change log is usually included, detailing all the updates and 

changes that were made. For the CyRes methodology a similar process is proposed by using a 

distributed ledger. For the online verification process this is a useful system to ensure secure record 

keeping of what design changes were made to the system and the verification tasks that were 

completed. 

The ledger may collect details such as the tests performed on each design and a log of the key 

outcomes and whether any assertion violations were found. It could further log the state of the test 

system which we have shown to be important in the reliability of certain simulation code. Details 

such as the build and configuration of the remote simulation server, simulation code version and 

even runtime specifics such as resource utilisation, scheduling policy and process priority have all 

been shown to impact variance between otherwise identical simulation tasks18. 

The ledger may also serve as an executive level account of the proposed design and those which 

have failed to meet the verification requirements, and which have been put into operation. 

Deterministic Simulation 
The use of simulation for testing and verification has become ubiquitous throughout research and 

commercially focussed organisations. Simulation can be seen as the less costly and complementary 

method to physical testing, also allowing safety-critical tests to be performed without consequences 

to the safety of trial participants. 

 
18 G. Chance, A. Ghobrial, S. Lemaignan, T. Pipe and K. Eder, "On Determinism of Game Engines used for 
Simulation-based Autonomous Vehicle Verification", arxiv preprint 
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Increasingly, the autonomous vehicle community are adopting game engines as simulation platforms 

to support the development and testing of vehicle control software. CARLA19, for instance, is an 

open-source simulator for autonomous driving that is implemented in the Unreal Engine20, a real-

time 3D creation environment for the gaming and film industry as well as other creative sectors. 

State-of-the-art game engines provide a convenient option for simulation-based testing. They offer 

sufficient realism in the physical domain combined with realistic rendering of scenes, potentially 

suitable for perception stack testing and visual inspection of accidents or near misses. Furthermore, 

they are easy to set up and run compared to on-road testing and are simple to control and observe, 

both with respect to the environment the AV operates in as well as the temporal development of 

actors21. Compared to the vehicle dynamics simulators and traffic-level simulators used by 

manufacturers22, game engines offer a simulation solution that meets many of the requirements for 

the development and functional safety testing of AVs in simulation. However, while game engines 

are designed primarily for performance to achieve a good user experience, the requirements for AV 

verification go beyond that and include determinism. 

TSL has shown that game engines are not deterministic and under certain conditions fail to meet the 

tolerances required for verification. In Figure 26 the results of a case study are presented for a 

verification environment that uses CARLA. The maximum variance in the simulation output (y axis) is 

plotted for various simulation tasks (tests 1-6) that cover different situations involving vehicles and 

pedestrians in an autonomous driving scenario. The required tolerance of 1cm for this example is 

indicated in Figure 26 with a dashed 1cm line. Additionally, the level of system resource utilisation 

was artificially changed to imitate a simulation server under a high load (x axis).  

The study found, for the specific system investigated, that scenarios that involved vehicle collisions 

(tests 2 & 4) resulted in a variance consistently over the maximum specified for the verification 

outcome to be reliable, irrespective of whether the system was under high computational stress or 

not. Intuitively, the calculations required to simulate the physical processes associated with vehicle 

collisions (as in tests 2 & 4) can reasonably be expected to be significantly more complex, causing 

increased computational load, than those where no vehicle collisions occur (e.g. tests 1 & 3). In fact, 

the scenarios with no vehicle collisions (tests 1 & 3) show low simulation variance under light 

computational load. However, artificially increasing the computational load for these scenarios 

appears to result in increased simulation variance, with very high computational stress (>=75% 

resource utilisation) leading to variance above tolerance, similar to that observed for the scenarios 

with collisions.  

 

 
19 CARLA: Open source simulator for autonomous driving research. http://carla.org/. Accessed: 2020-011-13.  
20 Unreal Engine 4. https://www.unrealengine.com/. Accessed: 2020-011-13. 
21 S. Ulbrich, T. Menzel, A. Reschka, F. Schuldt, and M. Maurer, “Defining and Substantiating the 
Terms Scene, Situation, and Scenario for Automated Driving,” IEEE Conference on Intelligent 
Transportation Systems, Proceedings, ITSC, vol. 2015-Oct, pp. 982–988, 2015. 
22 Z. Saigol and A. Peters, “Verifying automated driving systems in simulation framework and challenges,” 25th 
ITS World Congress, Copenhagen, 2018. 
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Figure 26 Simulation variance for various verification tasks and resource utilisation levels. 

The high computational load to simulate physical processes can reasonably be linked to an increase 

in thread activity and therefore CPU scheduling. The research postulated that a change in execution 

order, e.g. caused by CPU scheduling, could be a key source of simulation variance, because when 

certain calculations are processed in different orders, they can produce different results, e.g. due to 

floating point arithmetic not being associative.  

The work proposes a general process that can be followed to determine whether a simulation 

environment is deterministic and, if not, then what can be done to understand the potential sources 

of variance and how the system should be monitored at runtime to ensure compliance to an agreed 

upon tolerance, Figure 27. In any operational system for CyRes, it would be important to track 

aspects of the simulator in the internal and external settings shown in items 2 & 3 such as; process 

priority for the simulation and any other processes running concurrently, CPU and GPU utilisation 

levels, memory configuration and any specified memory placement if using clustered or virtualised 

machines, specific configurations and version of the simulation code and a full description of the 

scenario using e.g. the open-source format openScenario23. 

 

Figure 27 Methodology devised for determining simulation variance. 

 
23 https://www.asam.net/standards/detail/openscenario/  

https://www.asam.net/standards/detail/openscenario/
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Automated/Online Assertion Checking 
We present a demonstration of the assertion testing process that can be applied to any system with 

the appropriate monitoring. In the example below a driving scenario is considered. 

 

Figure 28 An overtaking scenario from https://carlachallenge.org/challenge/nhtsa/. 

The simulation environment can be a full 3D rendered environment that is rich in details suitable for 

testing and verification of, for example, perception stacks, where details such as broken road lines or 

cloud cover could result in different interpretation of a scene from the perspective of the control 

system. While this high level of detail is needed for testing, only an abstracted version of events is 

required for many of the online verification tasks, especially those that can be tested logically 

against a fixed ground truth. 

For the overtaking scenario, the driver or autonomous control system must make a judgement prior 

to and during overtaking that complies with a ‘ground truth’ that we wish to observe. The rules of 

this ground truth may be formulated in many ways and are typically based on the rules and 

standards that can be found in the highway code, driving laws or social norms.  

In the following example we use the rules from entry 162 of the UK Highway Code to illustrate the 

creation of an assertion in a format that can be tested in simulation. Rule 162 states: 

Before overtaking you should make sure 

• the road is sufficiently clear ahead, 

• road users are not beginning to overtake you, 

• there is a suitable gap in front of the road user you plan to overtake. 

 

Formalisation of Assertions 
The next step is to turn these human interpretable rules, regulations and laws into a language that 

can be computationally parsed. These machine-readable rules are called a assertions. In general, we 

distinguish invariants, which are properties that must be satisfied throughout a scenario or part of a 

scenario, e.g. observing a given speed limit or maintaining a safe distance to other road users, as 

well as pre- and post-conditions, and potentially variant properties. To cover a highway rule 

completely, a combination of logic properties will normally be required. 

https://carlachallenge.org/challenge/nhtsa/
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Data obtained during the simulation can then be used to check the assertions that are relevant for 

the given scenario. This can be achieved using assertion monitors, which compute the truth value for  

logical expressions from the simulation logs. Figure 29 illustrates the steps taken to generate an 

assertion checking algorithm for the overtaking scenario. This includes the parameters and metrics 

that need to be monitored at runtime. For overtaking this requires at least knowledge of the 

position of the vehicle and the lead vehicle to be overtaken, the details of the road and road 

markings including where the legal centreline of the road is, the speed of each actor and other 

dynamic data such as the braking distance of each vehicle. 

 

Figure 29 Analysis of an overtaking scenario to determine an assertion checking routine. 

Assertion Checking 
The process of checking the assertion must only use metrics that can be monitored at runtime, or at 

least calculated within reasonable time from raw simulation log data, e.g. if speed is not monitored 

directly then it can be calculated from position and time data. 

For assertion checking the level of detail need not be at the level of fidelity of the simulator but just 

detailed enough to capture the metrics required for the purposes of assertion checking. As such, 

lightweight logfiles are usually sufficient and can be checked offline or run online alongside the 

simulation itself. These logs will be useful for any regulatory or legal requirements of the CyRes 

process and due to being relatively light data, could be stored in the distributed ledger. 

Figure 30 shows a layout of the database structure that can be used for assertion checking. The 

simulation data is written to the raw_data table under the main sim_log. The log also contains 

details about any relevant contextual information under the environment header, which includes 

road map information for the overtaking example including lane delineation and the position and 

type of road markings. This raw data will also capture status conditions of actors which may include 

data such as indicating status or traffic light signal colour. 

The top left of Figure 30 shows the storage of the assertions in a database file which may be written 

in human readable form and is then converted to a form readable by the database. In this example, 

SQL is appropriate for the geospatial relational queries required to check assertions. 

An important part of the assertion checking process requires dynamic information which may be 

further enriched by combining this with functional environmental data (functional_static) which 

might include occluding objects (foliage) or areas of varied illumination. This level of detail will allow 

queries to include whether actors are visible or have crossed road lines and be able to project 

braking distances based on speed, maximum braking deceleration and heading angle. Dynamic 

queries are especially useful to enable testing complex assertions during online verification. 

A precondition monitor (lower right in Figure 30) will only activate the assertion check if the 

precondition is met. For example, violation of a red traffic light can only be tested if there is a red 

light present when the vehicle approaches the signal controlled area. This approach saves resources 
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and superfluous log entries. If an assertion is checked, the SQL query is executed and the results are 

written to the assertion_results table. Finally, a database of actors can be called upon to draw down 

information or characteristics about the actors within the simulation which may include information 

that will assist with the assertion checking such as actor size and shape, acceleration and 

deceleration limits, centre of gravity and any other actor-specific data. 

In conclusion, a database structure like the one shown in Figure 30 would be suitable for assertion 

testing in the CyRes framework. The database proposal would work on a large scale and operates on 

libraries that have fast access and execution times, being commercially used for large scale 

operation such as Google maps. 

 

Figure 30 A database structure suitable for assertion checking of an autonomous system. 
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Appendix F: The Stability Analysis Tool 

Conceptual Design 
In principle, the stability analysis framework is developed through two phases, offline design and 

online operation, as depicted in Figure 31.  

In the offline design phase, Lyapunov stability theory is employed to establish a stability rule working 

within a set of constraints to assess the control system stability. The system is considered as “stable” 

if all of the rule and constraints are satisfied. The system is considered as “unstable” if either the rule 

or any of the constraints are unsatisfied. In addition, a system observer is  

In the online operation phase, at each step (based on the assumptions made during the problem 

definition): 

• If any of the stability constraints or the stability rule derived in the offline phase is not 

satisfied, the system is unstable and an alarm is triggered for the system to make an 

immediate decision 

• DoS attack is triggered firstly based on the system feedback delay (time stamp of event 

driven approach).  

• Deception attack is triggered based on the difference between the actual system 

performance measurement and the observer output (performance divergence).  

• Two counters are used to count the numbers of consecutive DoS and Deception attack 

detections, respectively   

o If any/both counter value is/are above the pre-defined threshold(s) (called a 

timeframe window)  

▪ DoS or/and Deception attack  

▪ If the system is still identified as stable, only an alarm is triggered but it 

may allow the vehicle to continue operation. In addition, AI-based 

machine learning module (if having) is enabled to update the database 

to accept this minor attack in the future 

▪ If the system is unstable, a mitigation plan is required, for example, to 

send warning to the user, to reconfigure the control system within 

some thresholds or to stop the vehicle immediately. 

o Else, the system can continue its operation as long as it is stable 
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Figure 31 Proposed design framework for stability analysis tool 

 

Lyapunov Stability Theory 

Design Principles 

System model 
Without loss of generality, a dynamic model of a control system in CAVs can be represented as 

{
𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐷𝑤(𝑡)

𝑦 = 𝐶𝑥(𝑡)
 (1) 

where 𝑥 ∈ 𝑅𝑥, 𝑢 ∈ 𝑅𝑢, 𝑦 ∈ 𝑅𝑦 and 𝑤 ∈ 𝑅𝑤
 denote the state vector, control input, measurement 

from sensors and disturbances, respectively; A, B, C and D are matrices with appropriate dimensions 

(either time-variant or time-invariant).  

Design a generic control law for the system in the form of:  

𝑢(𝑡) = 𝐾𝐶𝑥(𝑡) (2) 
 

Modelling a system controlled under an imperfect network  
Without loss of generality, a networked control system (NCS) consists of actuators and sensors 

which are time-driven with a sampling rate of h and a controller which is zero-order hold (ZOH) and 
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event-driven (e.g. via CAN). Considering both network communication issues (delays, package 

dropout and disordering), a CAV control system in (1) can be represented as 

𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝐾𝐶𝑥(𝑡 − 𝜃(𝑡)) + 𝐷𝑤(𝑡) (3) 

where 𝜃(𝑡) is a piecewise linear function satisfying 

𝜏𝑡𝑘
≤ 𝜃(𝑡) ≡ 𝑡 − 𝑡𝑘ℎ ≤ (𝑡𝑘 +1 − 𝑡𝑘) ℎ +𝜏𝑡𝑘+1

 (4) 

To minimise the network traffic, a threshold can be added in to the event-driven communication 

scheme as (using a scalar parameter 𝜎 and a positive matrix 𝛷) 

𝑡𝑘+1ℎ = 𝑡𝑘ℎ + 𝑚𝑖𝑛{𝑝ℎ|ⅇ𝑇(𝑖𝑝ℎ)𝛷ⅇ(𝑖𝑝ℎ) > 𝜎𝑥𝑇(𝑡𝑘ℎ)𝛷𝑥(𝑡𝑘ℎ)} (5) 

where 𝑖𝑝 = (𝑡𝑘 + 𝑝)ℎ; ⅇ(𝑖𝑝ℎ) = 𝐶𝑥(𝑖𝑝ℎ) − 𝐶𝑥(𝑡𝑘ℎ). 

The condition (5) means that the even-driven communication is only activated once there is a 

sufficient amount of change at the measurement site. 

Following (4), define a new piecewise linear function: 

 𝜏𝑡𝑘
≤ 𝜂(𝑡) ≡ 𝑡 − 𝑖𝑝ℎ ≤ (𝑡𝑘 +1 − 𝑡𝑘) ℎ +𝜏𝑡𝑘+1

 (6) 

A generic NCS in CAVs can be modelled as 

{
𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝐾𝐶𝑥(𝑡 − 𝜂(𝑡)) + 𝐵𝐾𝐶ⅇ(𝑖𝑝ℎ) + 𝐷𝑤(𝑡)

𝑦 = 𝐶𝑥(𝑡)
 (7) 

Stability analysis of formulated problem  

Without loss of generality, system (7) always can be represented in another form: 

𝑥̇(𝑡) = 𝐹(𝑡, 𝑥(𝑡)) + 𝐺(𝑡, 𝑥(𝑡 − 𝜂(𝑡)) (8) 

Based on the system presentation (8) and if the delay is bounded, one of the most well-known 

techniques to ensure the resilient control is to define a Lyapunov-Krasovskii function 𝑉(𝑥(𝑡)) such 

that 𝑉(𝑥(𝑡)) >  𝜀|𝑥(𝑡)|2, 𝜀 > 0 and along the trajectories of (8): 

𝑉̇(𝑡) = −𝑥𝑇(𝑡)𝑄𝑥(𝑡) (9) 

The Lyapunov-Krasovskii function is then designed in such a way that the system is guaranteed to be 

asymptotically stable with a control gain K: 

𝑉(𝑃) = 𝑃𝑇(0)𝑈(0)𝑃(0) + 2𝑃𝑇(0) ∫ 𝑈𝑇(𝜂(𝑡) + 𝛾)𝐺𝑃(𝛾) ⅆ𝛾
0

−𝜂(𝑡)

+ ∬ 𝑃𝑇(𝛾2)𝐺𝑇𝑈(𝛾2 − 𝛾1)𝐺𝑃(𝛾1) ⅆ𝛾1 ⅆ𝛾2

0

−𝜂(𝑡)

 (10) 

where  

𝑈(𝛾) = ∫ 𝐾𝑇(𝑡)

∞

0

𝑄𝐾(𝑡 + 𝛾)ⅆ𝑡 (11) 

By differentiating 𝑉(𝑥(𝑡)) along the trajectory of (8), the control gain K can be found to ensure that 

𝑉̇(𝑡) < 0. 
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Scalability and Adaptability 

Conceptual Design 
The control scheme proposed in the previous sections is developed based on the system’s 

mathematical representation (7) and/or (8). Regarding practical applications to different systems in 

CAVs, especially with impacts of engineering differences (e.g. environment, network bandwidth, and 

system ageing), there are always unpredictable uncertainties and nonlinearities. This will lead to the 

mismatch between the actual system performance and its estimated performance using (7) and/or 

(8).  

The following approach can be utilised to improve the scalability of the tool: 

• First, based on the design knowledge, each system can be modelled in a state space 

form 

• Second, all unknown nonlinearities and uncertainties (deducted from the bounded 

delays formulated in (5)), can be represented by one or several lumped – unknown 

nonlinear function(s) – representing by time-variant matrices as denoted in (1). 

• Third, any unknown nonlinear function can be modelled by using AI techniques and 

Lyapunov-based machine learning (ML) technique. Acceptable instantaneous 

divergence between the actual system response and its estimated value will be 

employed to support ML. 

Furthermore, the following approach can be utilised to improve the adaptability of the tool: 

• If and either DoS or Deception attack (or both of them) is detected while the system 

is still stable, an impact analysis should be carried out to evaluate the potential of 

impact (risk evaluation) if continuing to operate the vehicle under this attack.  

• If the risk score is very low following the BS ISO/SAE 21434:2021 standard, the AI-

based ML mechanism can be designed to update the database to accept this type of 

attack in the future. It means the system will adapt to the new working condition by 

some potential routes as follows: 

o Refining the stability constraints 

o Regulating the timeframe window 

o Regulating the threshold of time delay (indicating a potential DoS attack) 

and/or the threshold of performance divergence (indicating a potential of 

Deception attack) 

 
Motivation 

As we introduce diversity into the CAV systems, and consider vulnerability analysis of the implemented 

systems, there is a need to consider the stability of the systems.  One example of where diversity may 

be introduced is in the Networked Control System (NCS). Potential cyber attacks on the NCS include 

Denial-of-Service (DoS), deception attack and attacks to involving system time-delays and/or package 

disorders.   

There is a need to study how stability analysis theories, such as Lyapunov, can be utilised to distinguish 

the impact of cyber attacks and natural system nonlinearities - uncertainties (including issues 

associated with imperfect network communication) in real-time.   
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Technical approach 

First, we define the set of systems that are proposed through the diversity-by-design strategy.  We 

next define the potential attack points at both the local network within a vehicle and the global 

network between vehicles.  

Third, we represent the problem through a defined mathematical model. Attack types such as DoS, 

time-delays and package disorders can be represented in a form of modified NCS model(s) in which 

thresholds could be used to classify between: natural time-delays, natural package losses, attacked 

time-delays and attacked package losses. Meanwhile deception attacks through vehicle sensor 

information could be modelled by employing either nonlinear functions (if sub-system/component 

models available) or unknown nonlinear functions (using AI, like fuzzy or neural network). Those 

functions can be bounded by vehicle sub-system/component specifications and power – working 

ranges. Impact of deception attacks on sensor information can be then represented by a probability 

distribution function staying within the nonlinear functions.  

Finally, Lyapunov theory will be deployed to ensure the stability of NCS(s). As a calibration tool, the 

proposed NCS’ outputs can be used to compare with CAVs’ decisions (made by their existing control 

units) to identify cyber attacks. The proposed NCS can also be employed directly in CAVs to support 

the vehicle decision making irrespective of attack conditions and levels. 

Case study 

Braking control system in CAVs can be selected as a case study. Generic block diagram of this braking 

control system with potential attack points can be depicted in Figure 32 below. In this figure, the 

proposed NCS tool is tagged as “Break Control Observer”.  

 
Figure 32: Generic block diagram of braking control system with potential attack points 
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Appendix G: Illustrative Screenshots for RKVST 
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Appendix H: A Case Study – Use Case ABS 
 

Braking Control System Model 

To verify the feasibility of the proposed stability analysis tool, an Anti-lock Braking System 
(ABS) has been selected for the case study.  

Here the ABS model comes from MathWorks. Time delays are added into the system to mimic the 
network communication environment. The ABS controller is designed using Sliding Mode Control 
(SMC) technique to guarantee the robustness of the ABS. 

Simulation Setup 
A simulation model of the SMC-based ABS braking system has been built within MATLAB/Simulink 
environment as depicted in Figure 33. Based on the definition of the researched attack types, a DoS – 
Deception attack simulation is implemented as depicted in Figure 34. 

Next the stability analysis tool is implemented to work in parallel with the ABS system (see Figure 34). 
The integrated simulation model is then obtained as shown in Figure 35. The tool will take the ABS 
control command and the feedback vehicle and wheel speeds as the inputs while provide four binary 
outputs, including:  

• System stability (stable [1]/unstable [0]) 

• DoS attack flag (attack detected [1]/no attack [0]) 

• Deception attack flag (attack detected [1]/no attack [0]) 

• ML enable (enabled [1]/disabled [0]) – for the adaptability as discussed in Section 0 

The model has been completely tested and then integrated with the blockchain to demonstrate its 

applicability (see the Blockchain report). 

 

Figure 33 A case study - ABS control system using SMC 
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Figure 34 DoS and Deception attack simulator 

 

 

Figure 35 Stability analysis tool built within Simulink 
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Figure 36 Integrated Simulink simulation program 

 

To verify the feasibility of the proposed solution, the latter will be applied to the ABS use-
case as in Figure 37. The top half is a representation of the real system, the variation in the 
performance of the communication network is an example of significant difference. This 
represents an instance of the real system; the bottom half is the suitability and stability 
analysis, as an instance (or result) of a simulation. 

 

Figure 37: ABS model and simulator. 

 



   
 

 

90 
 

Phases 

Recording events from Vehicle/Environment 

The real system should report events to the blockchain whenever inputs or outputs are 
outside of those assumed or achieved by the simulation. For example, if the delay in the 
communications network (green box) is outside of the range assumed in the simulation this 
needs to be recorded as an event (Figure 38). 

 

Figure 38: Creation of new events. 

Preparing new simulations 

A component in Cyres solution, namely the Monitor/Adjust block, processes new events and 
determine how up update the simulation to reflect those. In doing so, it generates multiple 
new sets of thresholds/constraints that are forwarded as input to the simulator(s) via the 
creation of simulation-request transactions (Figure 39). 

 

 

Figure 39: Preparation of multiple simulation requests. 
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Running simulations and storing outcomes 

Each simulator block in the system can retrieve the corresponding simulation request 
transaction, i.e. the one with a compatible subsystem and useCase if any. Once completed, 
simulations declare if the system is stable or not and those outcomes are stored back into 
the distributed ledger (Figure 40). 

 

Figure 40: Concurrent simulation of the new conditions. 

 

Evaluating simulation results 

The re-running of the simulations with the updated constraints and assumptions provides a 
set of data for decisions to be made; with these results in the blockchain they are available 
for post assessment and validation or review. The decisions made as a result of assessing 
these results (either by human or machine) also needs to recorded in the distributed ledger 
sufficiently to identify the results being relied upon and decision reasoning. Using a smart 
contract, the Monitor/Adjust block collects all the simulations (TS) and, considering the 
outcome, it might decide to promote a new configuration, creating a TC transaction. The 
latter is stored into the distributed ledger and possibly forwarded to the vehicles, becoming 
the new baseline in identifying new events (Figure 41). 
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Figure 41: Evaluation of simulation results. 
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